Skip to main content
Log in

Bacteria ingestion by Daphnia galeata in a biomanipulated reservoir: a mechanism stabilizing biomanipulation?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We determined clearance rates and ingestion rates of Daphnia galeata on bacteria and phytoplankton in order to test if bacteria are an important alternative food resource for daphnids during periods of low phytoplankton biomass in the biomanipulated Bautzen reservoir (Germany). D. galeata was able to feed on bacteria with the same efficiency as on algae during most of the time. In spite of similar clearance rates, bacteria ingestion was usually lower than phytoplankton ingestion due to lower bacterial biomass. Only at low biomass of algae in late fall and during the clear water phase, bacteria contributed up to 87% and 42%, respectively, to total carbon ingestion of D. galeata. However, even a short period of relatively high bacteria grazing by daphnids may be important for biomanipulation. Bacteria might bridge over periods of food limitation of daphnids thus promoting the maintenance of high Daphnia biomass. Therefore, ingestion of bacteria by daphnids is thought to stabilize biomanipulation and may hold a key position in the food web of biomanipulated lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Pattern across marine and freshwater systems. Limnol. Oceanogr. 36: 1078–1090.

    Google Scholar 

  • Benndorf, J., 1987. Food webmanipulation without nutrient control: a useful stategy in lake restoration? Schweiz. Z. Hydrol. 49: 234–248.

    Google Scholar 

  • Benndorf, J., 1990. Conditions for effective biomanipulation: Conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 187–203.

    Google Scholar 

  • Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. ges. Hydrobiol. 80: 519–534.

    Google Scholar 

  • Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe & S. Reichel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen Reservoir. Limnologica 19: 97–110.

    Google Scholar 

  • Børsheim, K. Y. & S. Andersen, 1987. Grazing and food size selection by cructacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. J. Plankton Res. 9: 367–379.

    Google Scholar 

  • Børsheim, K. Y. & Y. Olsen, 1984. Grazing activities by Daphnia pulex on natural populations of bacteria and algae. Verh. int. Ver. Limnol. 22: 644–648.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hilbricht-Ilkowska, H. Kurasawa, P. Larsson& A. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. Environ. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Bratbak, G. & I. Dundas, 1984. Bacterial dry matter and biomass estimations. Appl. Environ. Microbiol. 48: 755–757.

    Google Scholar 

  • Brendelberger, H., 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol. Oceanogr. 36: 884–894.

    Google Scholar 

  • Burns, C. W., 1968. The relationship between body size of filter feeding cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13: 675–678.

    Google Scholar 

  • Christoffersen, K., B. Riemann, L. R. Hansen, A. Klysner & H. B. Sørensen, 1990. Qualitative importance of the microbiol loop and plankton community structure in a eutrophic lake during a bloom of Cyanobacteria. Microb. Ecol. 20: 253–272.

    Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater: A cross system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • DeMelo, R., R. France & D. McQueen, 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207.

    Google Scholar 

  • Derenbach, J. B. & P. L. LeB. Williams, 1974. Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.

    Google Scholar 

  • Gliwicz, Z. M., 1985. Predation or food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.

    Google Scholar 

  • Güde, H., 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton in Lake Constance. Hydrobiologia 159: 63–73.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: A preservation technique for cladocera. Limnol. Oceanogr. 18: 331–333.

    Google Scholar 

  • Happey-Wood, C. M. & A. H. Lund, 1994. Production of new organic carbon and its distribution between autotrophic picoplankton, bacteria, extracellular organic carbon and phytoplankton in an upland lake. Freshwat. Biol. 31: 1–18.

    Google Scholar 

  • Horn, W., 1991. The influence of biomass and structure of the crustacean plankton on the water transparency in the Saidenbach storage reservoir. Hydrobiologia 225: 115–120.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkaer & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 219–227.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & O. Sortkaer, 1996. Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. J. Plankton Res. 18: 1605–1625.

    Google Scholar 

  • Jørgensen, N. O. G. & S. Bosselmann, 1988. Concentration of free amino acids and their bacterial assimilation rates in vertical pro-files of two Danish lakes: Relation to diel changes in zooplankton grazing activity. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31: 289–300.

    Google Scholar 

  • Jürgens, K., 1994. Impact of Daphnia on planktonic microbial food webs – A review. Mar. Microb. Food Webs 8: 295–324.

    Google Scholar 

  • Jürgens, K., H. Arndt & H. Zimmermann, 1997. Impact of metazoan and protozoan grazers on bacterial biomass distribution in mesocosm experiments. Aquat. Microb. Ecol. 12: 131–138.

    Google Scholar 

  • Jürgens, K., J. M. Gasol, R. Massana & C. Pedros-Alio, 1994. Control of heterotrophic bacteria and protozoans by Daphnia pulex in the epilimnion of Lake Ciso. Arch. Hydrobiol. 131: 55–78.

    Google Scholar 

  • Jürgens, K. & G. Stolpe, 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat. Biol. 33: 27–38.

    Google Scholar 

  • Kamjunke, N., T. Deppe & J. Benndorf, 1998. Bacterial production under varying trophic conditions and its importance as food source for daphnids in a biomanipulated reservoir. Int. Rev. Hydrobiol. 83: 413–420.

    Google Scholar 

  • Kamjunke, N., R. F. Herbst, A. Wagner & J. Benndorf, 1996. Size distribution of primary production in a whole-lake biomanipulation experiment under hypertrophic conditions. Arch. Hydrobiol. 138: 259–271.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Google Scholar 

  • Kirchman, D. L. & M. P. Hoch, 1988. Bacterial production in the Delaware Bay estuary estimated from thymidine and leucine incorporation rates. Mar. Ecol. Prog. Ser. 45: 169–178.

    Google Scholar 

  • Köthe, A. & J. Benndorf, 1994. Top-down impact of Daphnia galeata on pelagic heterotrophic flagellates in a whole-lake biomanipulation experiment. Mar. Microb. Food Webs 8: 325–335.

    Google Scholar 

  • Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol./Suppl. 48: 310–335.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Lyche, A., T. Andersen, K. Christoffersen, D. O. Hessen, P. H. B. Hansen & A. Klysner, 1996. Mesocosm tracer studies. 2. The fate of primary production and the role of consumers in the pelagic carbon cycle of a mesotrophic lake. Limnol. Oceanogr. 41: 475–487.

    Google Scholar 

  • McCauley, E. & F. Briand, 1979. Zooplankton grazing and phytoplankton species richness, field tests of the predation hypothesis. Limnol. Oceanogr. 24: 243–252.

    Google Scholar 

  • McQueen, D. J., 1998. Freshwater food web manipulation: A powerful tool for water quality improvement, but maintenance is required. Lakes and Reservoirs: Research and Management 3: 83–94.

    Google Scholar 

  • Meffert, M.-E. & J. Overbeck, 1985. Dynamics of chlorophyll and photosynthesis in natural phytoplankton associations. II. Primary productivity, quantum yields and photosynthetic rates in small Northgerman lakes. Arch. Hydrobiol. 104: 363–385.

    Google Scholar 

  • Mehner, T., S. Hülsmann, S. Worischka, M. Plewa & J. Benndorf, 1998. Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. J. Plankton Res. 20: 1797–1811.

    Google Scholar 

  • Pace, M. L. & J. J. Cole, 1994. Primary and bacterial production in lakes: are they coupled over depth? J. Plankton Res. 16: 661–672.

    Google Scholar 

  • Pace, M. L., G. B. McManus & S. E. G. Findlay, 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795–808.

    Google Scholar 

  • Pedros-Alio, C. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol. 13: 227–239.

    Google Scholar 

  • Rai, H., 1984. Magnitude of heterotrophic metabolism of photosynthetically fixed dissolved organic carbon (PDOC) in Schöhsee, West Germany. Arch. Hydrobiol. 102: 91–103.

    Google Scholar 

  • Reche, I., P. Carrillo & L. Cruz-Pizarro, 1997. Influence of metazooplankton on interactions of bacteria and phytoplankton in an oligotrophic lake. J. Plankton Res. 19: 631–646.

    Google Scholar 

  • Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.

    Google Scholar 

  • Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Riemann, B. & S. Bosselmann, 1984. Daphnia grazing on natural populations of bacteria. Verh. int. Verein. Limnol. 22: 795–799.

    Google Scholar 

  • Riemann, B., N. O. G. Jørgensen, W. Lampert & F. Azam, 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microb. Ecol. 12: 247–258.

    Google Scholar 

  • Riemann, B. & M. Søndergaard, 1984. Measurement of diel rates of bacterial secondary production in aquatic environments. Appl. envir. Microbiol. 47: 632–638.

    Google Scholar 

  • Sanders, R. W., C. E. Williamson, P. L. Stutzman, R. E. Moeller, C. E. Goulden & R. Aoki-Goldsmith, 1996. Reproductive success of 'herbivorous' zooplankton fed algal and nonalgal food recources. Limnol. Oceanogr. 41: 1295–1305.

    Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch., 1975. Biomanipulation: an ecosystem approach to lake restoration. In: Bresonik, P. L. & J. L. Fox (eds), Water Quality Management Through Biological Control. Report No. ENV–07–75–1. University of Florida, Gainesville: 85–96.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Google Scholar 

  • Sommaruga, R., 1995. Microbial and classical food webs: A visit to a hypertrophic lake. FEMS Microb. Ecol. 17: 257–270.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Urabe, J. & Y. Watanabe, 1991. Effect of food conditions on the bacterial feeding of Daphnia galeata. Hydrobiologia 225 (Dev. Hydrobiol. 71): 121–128.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Vollenweider, R. A. (ed.), 1969. A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12, Blackwell Scientific Publications, Oxford: 213 pp.

  • Wylie, J. L. & D. J. Currie, 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.

    Google Scholar 

  • Zankai, N. P., 1983. Ingestion rates of some Daphnia species in a shallow Lake (Lake Balaton, Hungary). Int. Rev. ges. Hydrobiol. 68: 227–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamjunke, N., Benndorf, A., Wilbert, C. et al. Bacteria ingestion by Daphnia galeata in a biomanipulated reservoir: a mechanism stabilizing biomanipulation?. Hydrobiologia 403, 109–121 (1999). https://doi.org/10.1023/A:1003722318598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003722318598

Navigation