, Volume 412, Issue 0, pp 5–15 | Cite as

Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience

  • M. BekliogluEmail author
  • L. Carvalho
  • B. Moss


Total phosphorus budget and studies on dissolved inorganic nitrogen concentrations have been made for a small, hypertrophic, shallow lake, Little Mere, for a year prior to effluent diversion and three years following effluent diversion. Considerable resilience in phosphate concentrations was expected from experiences elsewhere with shallow lakes. Pre-diversion clear water was associated with a high dominance of large-bodied Daphnia magna due to an absence of fish in the relatively low-oxygen conditions. Unexpectedly, the phosphorus and nitrogen concentrations declined rapidly after effluent diversion (92% and 91%, respectively) and the lake has maintained the pre-diversion state of clear water. Little Mere provides evidence for importance of biological structure in determining the extent of chemical resilience. The laboratory sediment release rates of N and P were considerably higher than the net release rates, calculated from mass balance of the lake chemistry, as found elsewhere. Probably, lack of phytoplankton sedimentation, phytoplankton and plants uptake were the reasons for several fold high release rates that were observed in laboratory experiment. Therefore, it appeared to approach the gross release rates.

clear water Daphnia gross release net release nutrients shallow lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beklioglu, M. & B. Moss, 1996a. Existence of a macrophytedominated clear water state over a wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337: 93-106.Google Scholar
  2. Beklioglu, M. & B. Moss, 1996b. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwat. Biol. 36: 315-325.Google Scholar
  3. Boers, P. C. M., 1986. Studying the phosphorus release from the Loosdrecht lakes sediment using continuous flow system. Hydrobiol. Bull. 20: 5-7.Google Scholar
  4. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5-59.Google Scholar
  5. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634-639.Google Scholar
  6. Carvalho, L., 1994. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere, England. Hydrobiologia 275/276 (Dev. Hydrobiol. 94): 53-63.Google Scholar
  7. Carvalho, L., M. Beklioglu & B. Moss, 1995. Changes in a deep lake following sewage diversion - a challenge to the orthodoxy of external phosphorus control as a restoration strategy. Freshwat. Biol. 34: 399-410.Google Scholar
  8. Chaney, A. L & E. P. Morbach, 1962. Modified reagents for the determination of urea and ammonia. Clin. Chem. 8: 130-132.Google Scholar
  9. Christensen, P. B., L. P. Nielsen, J. J. Sørensen & N. P. Recsbech, 1990. Denitrification in nitrate-rich streams: diurnal and seasonal variation related to benthic oxygen metabolism. Limnol. Oceanogr. 35: 640-651.Google Scholar
  10. Cullen, P. & C. Forsberg, 1988. Experience with reducing point sources of phosphorus to lakes. Hydrobiologia 170 (Dev. Hydrobiol. 48): 321-336.Google Scholar
  11. Edmonson, W. T., 1985. Recovery of Lake Washington from eutrophication. Proceedings from lakes pollution and recovery, Rome 15-18 April, 228-234.Google Scholar
  12. Eriksson, P. G. & S. E. B. Weisner, 1996. Functional differences in epiphytic microbial communities. Freshwat. Biol. 36: 555-562.Google Scholar
  13. Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317: 209-220.Google Scholar
  14. Holden, A. V. & L. A. Caines, 1974. Nutrient chemistry of Loch Leven, Kinross. Proc. R. Soc. Edinb. B 74: 101-121.Google Scholar
  15. James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition. Arch. Hydrobiol. 120: 120-129.Google Scholar
  16. Jensen, J. P., E. Jeppesen, P. Kristensen, P. B. Christensen & M. Søndergaard, 1992. Nitrogen loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow, hypertrophic lake (Lake Søbygaard, Denmark). Int. Revue ges. Hydrobiol. 77: 29-42.Google Scholar
  17. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Soøndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Mem. Ist. ital. Idrobiol. 48: 127-148.Google Scholar
  18. Jeppesen, E., J. P. Jensen, M. Søondergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 151-161.Google Scholar
  19. Jeppesen, E., M. Søndergaard, Ole Sortkjær, E. Mortensen & P. Kristensen, 1990. Interactions between phytoplankton, zooplankton and fish in a shallow hypertrophic lake: a study of phytoplankton collapses in Lake Søbygaard, Denmark. Hydrobiologia 191 (Dev. Hydrobiol. 53): 149-164.Google Scholar
  20. Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen, A.M. Hansen & T. Jørgensen, 1998a. Major perturbation in biological structure and dynamics of a shallow hypertrophic lake following a reduction in sewage loading: an 18-year study in Lake Soøbygaard, Denmark. Ecosystem 1: 250-267.Google Scholar
  21. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, P. H. Møller & K. Sandby, 1998b. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Arch. Hydrobiol. 142: 129-151.Google Scholar
  22. Johnes, P. J. & T. P. Burt, 1991. Water quality trends in the Windrush catchment: nitrogen speciation and sedimeent interactions. In Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation. International Association of Hydrological Science Publ. no. 203.Google Scholar
  23. Kristensen, P. & H. O. Hansen, 1994. European rivers and lakes. Assessment of their environmental state. European Environmental Agency: 122 pp.Google Scholar
  24. Lauridsen, T. L., E. Jeppesen & F. Ø. Andersen, 1993. Colonisation of submerged macrophytes in shallow fish manipulated Lake Veaæng: Impact of sediment composition and waterfowl grazing. Aquat. Bot. 46: 1-15.Google Scholar
  25. Lijklema, L., 1985. Nutrient cycling in lakes. Proceedings of the Dutch-Hungarian Symposium on Eutrophication of Shallow Lakes, Siofok.Google Scholar
  26. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: some methods for limnologists. Freshwater Biological Association Scientific Publication, 36.Google Scholar
  27. Malthus, T. J., E. F. H. Best & A. G. Dekker, 1990. An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht lakes (The Netherlands). Hydrobiologia 191 (Dev. Hydrobiol. 53): 257-263.Google Scholar
  28. Marsden, S., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139-162.Google Scholar
  29. Monthly Weather Report, 1990-1994. The Meteorological Office, Manchester Ringway Airport.Google Scholar
  30. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 367-378.Google Scholar
  31. Moss, B., M. Beklioglu, L. Carvalho, S. Kilinç, S. McGowan & D. Stephen, 1997. Vertically-challenged limnology; contrasts between deep and shallow lakes. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 257-267.Google Scholar
  32. Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verh. int. Ver. Limnol. 24: 568-572.Google Scholar
  33. North West Water Authority (NWWA), 1983. The effects of Mere STW on Rostherne Mere. NWWA Report River Management Group (South) Scientists Department Ref. No. TSS 83/7.Google Scholar
  34. Ozimek, T., E. Van Donk & R. D. Gulati, 1990. Can macrophytes be useful in biomanipulation of lakes? Lake Zwemlust example. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 399-407.Google Scholar
  35. Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of a eutrophic lake. Verh. int. Ver. Limnol. 22: 649-657.Google Scholar
  36. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Expectation, experience, extrapolation. Acad. Ver. Richarz Gmbh: 497 pp.Google Scholar
  37. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275-279.Google Scholar
  38. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round lake, Minnesota, the first two years. Freshwat. Biol. 14: 371-383.Google Scholar
  39. Sinke, A. J. C., 1992. Phosphorus dynamics in the sediment of a eutrophic lake. Roefschrift Wageningen: 120 pp.Google Scholar
  40. Søndergaard, M., 1989. Phosphorus release from the hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow system. Arch. Hydrobiol. 116: 45-59.Google Scholar
  41. Søndergaard, M., E. Jeppesen, P. Kristensen & O. Sortkjær, 1990. Interactions between sediment and water in a shallow and hypertrophic lake: a study on phytoplankton collapses in Lake Søbygaard, Denmark. Hydrobiologia 53: 139-148.Google Scholar
  42. Søndergaard, M., P. Kristensen & E. Jeppesen, 1993. Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark. Hydrobiologia 253: 345-356.Google Scholar
  43. Soderlund, R., L. Granat & H. Rodhe, 1985. Nitrate in precipitationa presentation of data from the European air chemistry network. Dept. of Meteorology, University of Stockholm Report cm-69.Google Scholar
  44. Stephen, D., B. Moss & G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 27-34.Google Scholar
  45. Sutcliffe, D. W., T. R. Carrick, J. Heron, E. Rigg, J. F. Talling, C. Woof & J. W. G. Lund, 1982. Long-term and seasonal changes in chemical composition of precipitation and surface waters of lakes and tarns in the English Lake District. Freshwat. Biol. 12: 451-506.Google Scholar
  46. Vollenweider, R. A, 1975. Input-output models; special reference to the phosphate loading concept in limnology. Schweiz Z. Hydrol. 37: 53-84.Google Scholar
  47. Weisner, S., G. Eriksson, W. Graneli & L. Leonardson, 1994. Influence of macrophyte on nitrate removal in wetlands. Ambio 23: 363-366.Google Scholar
  48. Williams, R. J. B., 1976. Chemical composition of rain, land drainage and borehole water from Rothamstead, Broom's Barn, Saxmundham and Woburn experimental stations. Tech. Bull. Minist. Agr. Fish. Fd. 32: 174-200. Her Majesty's Stationary Office, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Department of Environmental and Evolutionary BiologyUniversity of LiverpoolLiverpoolU.K

Personalised recommendations