Skip to main content
Log in

Karyotype analysis of the genus Clivia by Giemsa and fluorochrome banding and in situ hybridization

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The karyotypes of species in the genus Clivia were analyzed by using Giemsa C-banding, fluorochrome staining, silver impregnation and in situ hybridization. Banded ideograms were established with computer aided image analysis. A chromosome number of 2n = 22 and a similar basic karyotype, based on relative chromosome length and arm ratio, was found in all the four species. There were clear differences in banding pattern between the species which allowed their karyotypes, and consequently the species, to be unambiguously identified. Apart from at the centromere, heterochromatin was mainly distributed on the short arms of the smaller chromosomes. Amounts of heterochromatin in C. miniata and C. gardenii were greater than in the other two species. The number of pairs of rDNA sites, identified by in situ hybridization, ranged from one to three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryan, J.E., 1995. Lively Clivias. Am Horticul 74: 27–29.

    Google Scholar 

  • Comings, D. & M.E. Drets, 1976. Mechanisms of chromosome banding. IX. Are variations in DNA base composition adequate to account for quinacrine, Hoechst 33258 and daunomycin banding? Chromosoma 56: 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Deumling, B. & J. Greilhuber, 1982. Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84: 535–555.

    Article  CAS  Google Scholar 

  • Ebert, I., J. Greilhuber & F. Speta, 1996. Chromosome banding and genome size differentiation in Prospero (Hyacinthaceae): diploids. Plant Syst Evol 203: 143–177.

    Article  Google Scholar 

  • Fominaya, A., S. Molnar, N.S. Kim, Q. Chen, G. Fedak & K.C. Armstrong, 1997. Characterization of Thinopyrum distichum chromosomes using double fluoresence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome 40: 689–696.

    CAS  PubMed  Google Scholar 

  • Gouws, J.B., 1949. Karyology of some South African Amaryllidaceae. Plant Life 5: 54–60.

    Google Scholar 

  • He, Q. & Y. Deng, 1989. Karyotype analysis of C. nobilis. J Beijing Agric Coll 4: 110–111.

    Google Scholar 

  • Inariyama, S., 1937. Karyotype studies in Amaryllidaceae. I. Sci Rep Tokyo Bunrika Diagaku, Sect B 3: 95–113.

    Google Scholar 

  • Jacobs, M.J., B.G. Murray & R.C. Gardner, 1998. Simple and robust karyotyping of Pinus radiata. Plant Syst Evol submitted.

  • King, G.A. & K.M. Davies, 1992. Identification, cDNA cloning, and analysis of mRNAs having altered expression in tips of harvested asparagus spears. Plant Physiol 100: 1661–1669.

    Article  PubMed  CAS  Google Scholar 

  • Kodoma, Y., M.C. Yoshida & M. Sasaki, 1980. An improved silver staining technique for nucleolus organizer region by using nylon cloth. Jpn J Hum Genet 25: 229–233.

    Article  Google Scholar 

  • Leitch, A.R., T. Schwarzacher, D. Jackson & I.J. Leitch, 1994. In Situ Hybridization. Microscopy Handbooks 27. BIOS Scientific Publishers Ltd, Oxford, UK.

    Google Scholar 

  • Leeman, U. & F. Ruch, 1978. Selective excitation of mithramycin or DAPI fluorescence on double stained nuclei and chromosomes. Histochemistry 58: 329–334.

    Article  Google Scholar 

  • Levan, A., K. Fredga & A.A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Article  Google Scholar 

  • Lin, M.S. & D.E. Comings, 1977. Optical studies of the interaction of 4'-6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Moscone, E.A., M. Lambrou & F. Ehrendorfer, 1996. Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202: 37–63.

    Article  Google Scholar 

  • Mukai, Y., T.R. Endo & B.S. Gill, 1991. Physical mapping of 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100: 71–78.

    Article  CAS  Google Scholar 

  • Murray, B.G., M.D. Bennett & K.R.W. Hammett, 1992. Secondary constrictions and NORs of Lathyrus investigated by silver staining and in situ hybridization. Heredity 68: 473–478.

    Google Scholar 

  • Murray, B.G. & B.J. Davies, 1996. An improved method for preparing the chromosomes of pines and other gymnosperms. Biotech Histochem 71: 115–117.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., 1995. New Clivias. Engei Newslett 2, (11), Albiflora Ichikawa, Japan.

    Google Scholar 

  • Pedersen, C. & P. Langridge, 1997. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40: 589–593.

    CAS  PubMed  Google Scholar 

  • Sato, D., 1938. Karyotype alteration and phylogeny. IV. Karyotypes in Amaryllidaceae with special reference to the SAT-chromosome. Cytologia 9: 203–242.

    Google Scholar 

  • Schwarzacher, T., P. Ambros & D. Schweizer, 1980. Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134: 203–207.

    Article  Google Scholar 

  • Schwarzacher, T. & D. Schweizer, 1982. Karyotype analysis and heterochromatin differentiation with Giemsa C-banding and fluorescent counterstaining in Cephalanthera (Orchidaceae). Plant Syst Evol 141: 91–113.

    Article  Google Scholar 

  • Schweizer, D., 1976a. DAPI fluorescence of plant chromosomes prestained with actinomycin D. Exp Cell Res 102: 409–413.

    Article  Google Scholar 

  • Schweizer, D., 1976b. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, D., 1981. Counterstain-enhanced chromosome banding. Hum Genet 57: 1–14.

    PubMed  CAS  Google Scholar 

  • Sumner, A.T., H.J. Evans & R.A. Buckland, 1973. Mechanisms involved in the banding of chromosomes with quinacrine and Giemsa. I. The effects of fixation in methanol-acetic acid. Exp Cell Res 81: 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, A.T., 1990. Chromosome Banding. Unwin Hyman, Boston.

    Google Scholar 

  • Vorster, P., 1994. Clivia nobilis. Flowering Plants of Africa 53: 70–74.

    Google Scholar 

  • Vosa, C.G., 1970. Heterochromatin recognition with fluorochromes. Chromosoma 30: 366–372.

    Article  Google Scholar 

  • Weathers, J., 1911. The Bulb Book. John Murray, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ran, Y., Murray, B. & Hammett, K. Karyotype analysis of the genus Clivia by Giemsa and fluorochrome banding and in situ hybridization. Euphytica 106, 139–147 (1999). https://doi.org/10.1023/A:1003572705445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003572705445

Navigation