Skip to main content
Log in

Cycling performance and safety of rechargeable lithium cells with binary and ternary mixed solvent electrolytes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of electrolyte composition on the cycling performance and safety of AA rechargeable cells with a lithium metal anode, and an amorphous (a-) V2O5-P2O5 cathode was examined. The cells were cycled at a discharge current of 1000 mA and a charging current of 200 mA. The electrolytes were composed of ethylene carbonate (EC)/2-methyltetrahydrofuran (2MeTHF) binary and EC/propylene carbonate (PC)/2MeTHF ternary mixed solvents containing 40–70 vol% 2MeTHF to provide higher conductivity. The solute was 1.5mol dm−3 LiAsF6. The cycle life of the AA cells was evaluated by setting the end of cycle life at the cycle number where the discharge capacity fell to 50% of its maximum value. Cells with EC/2MeTHF (50:50) exhibited the longest cycle life among all the electrolytes examined here. Cells with EC/PC/2MeTHF (15:45:40) had the longest cycle life among the ternary mixed solvents systems. Fundamental abuse tests were also carried out on AA cells, which were cycled twice (fresh cells), cycled 100 times and cycled until the end of their cycle life. Neither the fresh nor the cycled cells with EC/PC/2MeTHF (15:45:40 ) smoked nor ignited in a 150 °C heating test or in an external short circuit test. However, the fresh cell with EC/2MeTHF (50:50) ignited in the 150 °C heating test. Summarizing the cycling and the abuse test results, the EC/PC/2MeTHF (15:45:40) ternary mixed systems exhibited the best performance. However, in terms of practical use, cell safety still requires further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pistoia (ed.), Industrial Chemistry Library, vol. 5, Lithium Batteries, Elsevier Science, The Netherlands, (1994) chapter 4.

    Google Scholar 

  2. M. Salomon, Abstracts of Eighth International Symposium on Solubility Phenomena, Niigata, Japan (1998) p. 7.

  3. G.P. Gabano (ed.), Lithium Batteries, Academic Press, London, chapters 2 and 13. (1983).

    Google Scholar 

  4. J.O. Besenhard (ed.), Handbook of Battery Materials, Wiley-VCH, Weinheim, (1998) chapter 3.1.

    Google Scholar 

  5. S. Tobishima, K. Hayashi, Y. Nemoto and J. Yamaki, Electrochim. Acta 42 (1997) 1709.

    Google Scholar 

  6. S. Tobishima, K. Hayashi, Y. Nemoto and J. Yamaki, J. Appl. Electrochem. 27 (1997) 902.

    Google Scholar 

  7. S. Tobishima, K. Hayashi, Y. Nemoto and J. Yamaki, Electrochim. Acta 43 (1998) 925.

    Google Scholar 

  8. S. Tobishima, Y. Sakurai and J. Yamaki, J. Power Sources 68 (1998) 455.

    Google Scholar 

  9. K.M. Abraham, J.L. Goldman and D.L. Natwig, J. Electrochem. Soc. 129 (1984) 2404.

    Google Scholar 

  10. V. Gutman, The Donor-Acceptor Approach To Molecular Interactions, Plenum Press, New York (1978) pp. 13–33.

    Google Scholar 

  11. S. Tobishima and T. Okada, Electrochim. Acta. 30 (1985) 1715.

    Google Scholar 

  12. M.Z.A. Munshi and B.B. Owens, Polymer J. 20 (1988) 577.

    Google Scholar 

  13. I.D. Raistrick, C. Ho and R.A. Huggins, Mat. Res. Bull. 11 (1986) 953.

    Google Scholar 

  14. Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carneli, H. Yamin and S. Luski, Electrochim. Acta. 17 (1994) 2559.

    Google Scholar 

  15. D. Aurbach, A. Zaban, Y. Gofer, Y. Ein-Eli, I. Weissman, O. Chusid and O. Abramson, J. Power Sources 54 (1995) 76.

    Google Scholar 

  16. K.M. Abraham, J.S. Foos and J.L. Goldman, J. Electrochem. Soc. 131 (1984) 2197.

    Google Scholar 

  17. L.A. Dominey, J.L. Goldman and V.R. Koch, Proceedings of the symposium on Primary and Secondary Lithium Batteries vol. 91–3, The Electrochem. Society, Pennington, NJ, (1991) p. 293.

    Google Scholar 

  18. J.L. Goldman, R.M. Mank, J.H. Young and V.R. Koch, J. Electrochem. Soc. 127 (1980) 1461.

    Google Scholar 

  19. J. Yamaki and S. Tobishima, Proceedings of the symposium on Primary and Secondary Lithium Batteries, vol. 91–3, The Electrochem. Soceity, Pennington, NJ, (1991) p. 235.

    Google Scholar 

  20. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter and E. Granot, J. Power Sources 68 (1997) 91.

    Google Scholar 

  21. M. Arakawa, S. Tobishima, Y. Nemoto, M. Ichimura and J. Yamaki, J. Power Sources, 43–44 (1993) 27.

    Google Scholar 

  22. F.C. Laman and K. Brandt, J. Power Sources 21 (1987) 195.

    Google Scholar 

  23. T. Takamura and Y. Sato, Battery Handbook for Users (in Japanese), The Institute of Electronics, Information and Communication Engineers, Tokyo, (1988) p. 15.

    Google Scholar 

  24. S. Tobishima, K. Hayashi, K. Saito, T. Shodai and J. Yamaki, Electrochim. Acta, 42 (1997) 119.

    Google Scholar 

  25. K. Saito, M. Arakawa, S. Tobishima and J. Yamaki, J. Power Sources 72 (1998) 111.

    Google Scholar 

  26. D.P. Wilkinson and J.R. Dahn, Extended Abstracts of Electrochemical Society, Fall Meeting, Abstract 53, Seattle, WA, (1990) p. 85.

    Google Scholar 

  27. M.W. Juzkow, Extended Abstracts of Electrochemical Society, Fall Meeting, Abstract 48, Seattle, WA, (1990) p. 76.

    Google Scholar 

  28. U. von Sacken and J.R. Dahn, Extended Abstracts of Electrochemical Society, Fall Meeting, Abstract 54, Seattle, WA, (1990) p. 87.

    Google Scholar 

  29. L. Lechmer and H. Woo, Extended Abstracts of Electrochemical Society Fall Meeting, Abstract 14, Phoenix, AZ, (1991) p. 20.

    Google Scholar 

  30. M.A. Gee and F.C. Laman, J. Electrochem. Soc. 140 (1993) L53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobishima, SI., Hayashi, K., Nemoto, Y. et al. Cycling performance and safety of rechargeable lithium cells with binary and ternary mixed solvent electrolytes. Journal of Applied Electrochemistry 29, 789–796 (1999). https://doi.org/10.1023/A:1003563501005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003563501005

Navigation