Skip to main content
Log in

Analysis of hexamer and pentamer motifs within a maize database: the presence of motif ‘signatures’ in functional gene categories

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Several transposable elements (TEs) have been reported in association with genes in maize and other plants. In this study we found, based on statistical analyses of 951 DNA sequences within a maize computer database, that short hexamer and pentamer DNA motifs from the Activator (Ac) and from the Tourist TEs, respectively, were also associated with maize genes. Moreover, these two short hexamer and pentamer TE motifs were nonrandomly and nearly nonrandomly distributed, respectively, with respect to particular biochemical functions of those maize genes. To determine whether this distribution may be unique to TE motifs, or may be more widespread among hexamers/pentamers in general, we similarly studied six additional hexamer or pentamer sequences not derived from TEs. These also showed nonrandom distribution with respect to functional gene categories in the maize database. However, each of the total of eight short sequence motifs we studied differed in its pattern of association with distinct sets of functional gene categories; that is, there was a unique ‘signature’ for each of the hexamers and pentameters tested. Potential biological hypotheses to explain these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfenito, M.R. & J.A. Birchler, 1993. Molecular characterization of a maize B chromosome centric sequence. Genetics 135: 589–597.

    PubMed  CAS  Google Scholar 

  • Becker, H.A. & R. Kunze, 1996. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol. Gen. Genet. 251: 428–435.

    PubMed  CAS  Google Scholar 

  • Becker, H.A. & R. Kunze, 1997. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol. Gen. Genet. 254: 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Angel, A.M., H.A. Becker, R. Kunze, B. Hohn & W.H. Shen, 1995. The binding motifs for Ac transposase are absolutely required for excision of Ds1 in maize. Mol. Gen. Genet. 248: 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Bult, C.J., O. White, G.J. Olsen et al. (40 co-authors), 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058–1073.

    PubMed  CAS  Google Scholar 

  • Bureau, T.E., P.C. Ronald & S.R. Wessler, 1996. A computerbased systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93: 8524–8529.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1992. Tourist: A large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994a. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994b. Stowaway: A new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Cochran, W.G., 1954. Some methods for strengthening the common ξ2 test. Biometrics 10: 417–451.

    Article  Google Scholar 

  • Devereux, J., P. Haeberli & O. Smithies, 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.

    PubMed  CAS  Google Scholar 

  • Fleischmann, R.D., M.D. Adams, O. White et al. (40 co-authors), 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    PubMed  CAS  Google Scholar 

  • Fraser, C.M., J.D. Gocayne, O. White et al. (29 co-authors), 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    PubMed  CAS  Google Scholar 

  • Kunze, R., 1996. The maize transposable element Activator (Ac). Curr. Top. Microbio. Immunol. 204: 161–194.

    CAS  Google Scholar 

  • Kunze, R. & P. Stralinger, 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177–3185.

    PubMed  CAS  Google Scholar 

  • MacRae, A.F., 1998. A pentamer-repeat-containing DNA sequence in Texas bluebonnet (Lupinus texensis Hook). Genome 41: 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Marks, M.D., J.S. Lindell & B.A. Larkins, 1985. Nucleotide sequence analysis of zein mRNAs from maize endosperm. J. Biol. Chem. 260: 16451–16459.

    PubMed  CAS  Google Scholar 

  • Mathews, C.K. & K.E. Van Holde, 1996. Biochemistry. 2nd edition, Benjamin/Cummings Menlo Park, California.

    Google Scholar 

  • Pearson, W.R. & D.J. Lipman, 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  • Pozueta-Romero, J., G. Houlne & R. Schantz, 1996. Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 171: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: Important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRae, A.F., Birch, R.M. & Bange, R.H. Analysis of hexamer and pentamer motifs within a maize database: the presence of motif ‘signatures’ in functional gene categories. Genetica 105, 19–29 (1999). https://doi.org/10.1023/A:1003559310976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003559310976

Navigation