Skip to main content

PlanTEnrichment: A How-to Guide on Rapid Identification of Transposable Elements Associated with Regions of Interest in Select Plant Genomes

  • Protocol
  • First Online:
Plant Genomic and Cytogenetic Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2703))

  • 239 Accesses

Abstract

Transposable elements (TEs) are repeat elements that can relocate or create novel copies of themselves in the genome and contribute to genomic complexity and expansion, via events such as chromosome recombination or regulation of gene expression. However, given the large number of such repeats across the genome, identifying repeats of interest can be a challenge in even well-annotated genomes, especially in more complex, TE-rich plant genomes. Here, we describe a protocol for PlanTEnrichment, a database we created comprising information on 11 plant genomes to analyze stress-associated TEs using publicly available data. By selecting a genome and providing a list of genes or genomic regions whose TE associations the user wants to identify, the user can rapidly obtain TE subfamilies found near the provided regions, as well as their superfamily and class, and the enrichment values of the repeats. The results also provide the locations of individual repeat instances found, alongside the input regions or genes they are associated with, and a bar graph of the top ten most significant repeat subfamilies identified. PlanTEnrichment is freely available at http://tools.ibg.deu.edu.tr/plantenrichment/ and can be used by researchers with rudimentary or no proficiency in computational analysis of TE elements, allowing for expedience in the identification of TEs of interest and helping further our understanding of the potential contributions of TEs in plant genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vicient CM, Casacuberta JM (2017) Impact of transposable elements on polyploid plant genomes. Ann Bot 120:195–207. https://doi.org/10.1093/aob/mcx078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704. https://doi.org/10.1038/s41576-018-0050-x

    Article  CAS  PubMed  Google Scholar 

  4. Deragon JM, Casacuberta JM, Panaud O (2008) Plant transposable elements. In: Wolf J-N (ed) Plant Genomes, vol 4, pp. 69–82

    Google Scholar 

  5. Deneweth J, Van de Peer Y, Vermeirssen V (2022) Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum. BMC Genom 23:18. https://doi.org/10.1186/s12864-021-08215-8

    Article  CAS  Google Scholar 

  6. Ramakrishnan M, Satish L, Kalendar R et al (2021) The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci 22:11387. https://doi.org/10.3390/ijms222111387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagata H, Ono A, Tonosaki K et al (2022) Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. Plant J 109:1035–1047. https://doi.org/10.1111/tpj.15711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karakülah G, Arslan N, Yandım C et al (2019) TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ 7:e8192. https://doi.org/10.7717/peerj.8192

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karakülah G (2018) RTFAdb: a database of computationally predicted associations between retrotransposons and transcription factors in the human and mouse genomes. Genomics 110:257–262. https://doi.org/10.1016/j.ygeno.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  10. Karakülah G, Suner A (2017) PlanTEnrichment: A tool for enrichment analysis of transposable elements in plants. Genomics 109:336–340. https://doi.org/10.1016/j.ygeno.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Jia S, Morton K, Zhang C et al (2018) An exome-seq based tool for mapping and selection of candidate genes in maize deletion mutants. Genom Proteom Bioinform 16:439–450. https://doi.org/10.1016/j.gpb.2018.02.003

    Article  CAS  Google Scholar 

  12. Jia S, Yobi A, Naldrett MJ et al (2020) Deletion of maize RDM4 suggests a role in endosperm maturation as well as vegetative and stress-responsive growth. J Exp Bot 71:5880–5895. https://doi.org/10.1093/jxb/eraa325

    Article  CAS  PubMed  Google Scholar 

  13. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47:e47. https://doi.org/10.1093/nar/gkz114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  15. Makarevitch I, Waters AJ, West PT et al (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915. https://doi.org/10.1371/journal.pgen.1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forestan C, Aiese Cigliano R, Farinati S et al (2016) Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446. https://doi.org/10.1038/srep30446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lv Y, Hu F, Zhou Y et al (2019) Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genom 20:864. https://doi.org/10.1186/s12864-019-6245-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Karakülah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eskier, D., Arıbaş, A., Karakülah, G. (2023). PlanTEnrichment: A How-to Guide on Rapid Identification of Transposable Elements Associated with Regions of Interest in Select Plant Genomes. In: Garcia, S., Nualart, N. (eds) Plant Genomic and Cytogenetic Databases. Methods in Molecular Biology, vol 2703. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3389-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3389-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3388-5

  • Online ISBN: 978-1-0716-3389-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics