Skip to main content
Log in

Modelling of mass transfer within the PEM fuel cell active layer: limitations at the particle level

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A microscopic approach is proposed for predicting the behaviour of the active layer from the local mass transfer equations at the catalytic particle level. The model takes into account diffusion and electrochemical reaction without ohmic drop limitation and is numerically performed for three geometric descriptions of the active layer using the finite element method. Diffusion limitations within the whole active layer are confirmed, but diffusion and competition effects at the particle level are also pointed out. As a practical conclusion, these effects at the particle level, almost negligible for oxygen reduction, are significantly influent for hydrogen oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Watanabe, H. Sei and P. Stonehart, J. Electroanal. Chem. 261 (1981) 375.

    Google Scholar 

  2. Y. Bultel, P. Ozil, R. Durand and D. Simonsson, in Proceedings of the first international symposium on `Proton Conducting Mem-brane Fuel Cells', edited by S. Gottesfeld, G. Halpert and A. Landgrebe. The Electrochemical Society Proceedings series, PV 95–23, Pennington, NJ (1995), p. 34.

  3. Y. Bultel, R. Durandand P. Ozil, J. Appl. Electrochem. 28 (1998) 269.

    Google Scholar 

  4. K. Kinoshita, `Electrochemical Oxygen Technology' (J. Willey & Sons, New York, 1992), p. 275.

    Google Scholar 

  5. S. Gottesfeld and T.A. Zawodzinski, Polymer electrolyte fuel cells, in Advanced Electrochemistry Science Engineering', Vol. 5, edited by R.C. Alkire, H. Gerisher, D.M. Kolb and C.W. Tobias (Wiley/ VCH, 1997), p. 197.

  6. M. Watanabe, M. Makita, H. Usami and S. Motoo, J. Electroanal. Chem. 195 (1986) 195.

    Google Scholar 

  7. M. Uchida, Y. Aoyama, N. Eda and A. Ohta, J. Electrochem. Soc. 142 (1995) 4143.

    Google Scholar 

  8. A. Kabbabi, F. Gloaguen, F. Andolfatto and R. Durand, J. Electroanal. Chem. 375 (1994) 251.

    Google Scholar 

  9. A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure and R. Durand, Electrochim. Acta. 41 (1996) 307.

    Google Scholar 

  10. A. Parthasarathhy, S. Srinivasan, A.J. Appleby and C.R. Martin, J. Electrochem. Soc. 139 (1992) 2530.

    Google Scholar 

  11. S. Gottesfeld, J. Electrochem. Soc. 139 (1992) 2980.

    Google Scholar 

  12. S. Gottesfeld, I.D. Rastrick and S. Srinivasan, J. Electrochem. Soc. 134 (1987) 1455.

    Google Scholar 

  13. M. Watanabe, H. Igarashi and K. Yosioka, Electrochim. Acta 40 (1995) 329.

    Google Scholar 

  14. P. BjoÈ rnbom, Electrochim. Acta 32 (1987) 115.

    Google Scholar 

  15. E-TEK, Inc., Catalog., (1995)

  16. K. Broka and P. Ekdunge, J. Appl. Electrochem. 27 (1997) 281.

    Google Scholar 

  17. P. Stonehart and P. Ross, Electrochim. Acta 21 (1976) 441.

    Google Scholar 

  18. D.M. Bernardi and M.W. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.

    Google Scholar 

  19. S. Srinivasan, H.D. Hurwitz and J.O'M Bockris, J. Chem. Phys. 46 (1967) 3108.

    Google Scholar 

  20. S. Srinivasan and H.D. Hurwitz, Electrochim. Acta 12 (1967) 495.

    Google Scholar 

  21. J. Giner and C. Hunter, J. Electrochim. Soc. 116 (1969) 1124.

    Google Scholar 

  22. F. Gloaguen and R. Durand, J. Appl. Electrochem. 27 (1997) 1029.

    Google Scholar 

  23. O. Antoine, Y. Bultel, R. Durand and P. Ozil, Electrochim. Acta 24 (1998) 3681.

    Google Scholar 

  24. O5. Antoine, PhD thesis, INPG (1998) Grenoble.

  25. Y. Bultel, P. Ozil and R. Durand, Electrochim. Acta 43 (1998) 1077.

    Google Scholar 

  26. Y. Bultel, P. Ozil and R. Durand, AIDIC Conference Series, Vol. 22 (1997), p. 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bultel, Y., Ozil, P. & Durand, R. Modelling of mass transfer within the PEM fuel cell active layer: limitations at the particle level. Journal of Applied Electrochemistry 29, 1025–1033 (1999). https://doi.org/10.1023/A:1003553706007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003553706007

Navigation