Skip to main content
Log in

Mercury concentration in the sediment at different gold prospecting sites along the Carmo stream, Minas Gerais, Brazil, and frequency of resistant bacteria in the respective aquatic communities

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Brazil mercury is used indiscriminately at prospecting sites for gold extraction, with a consequent enormous discharge of this metal into the aquatic ecosystem. Mercury concentration was investigated in 1995, 1996 and 1997 in the sediments of ten sites along the Carmo stream, MG, Brazil, almost all of them located in prospecting areas. Analysis of mercury in the sediments of all sampling sites showed that the levels were above the tolerable limit (0.1μg g−1), except for sites P4 (1997), P6 (1995) and P9 (1995 and 1997). The results showed wide mercury contamination in an environment not limited to the active or inactive prospecting areas, but also including sites outside these areas but downstream from them. There was a high incidence of bacteria resistant to mercury in the aquatic communities of the sites under study, ranging from 27.3 to 77.1%, except for P1 (an ecological station upstream from the sites under study) in which all bacteria isolated from water were sensitive. Furthermore, the fall in mercury concentration in the sediment at site P5 was not as marked as at other sites, with a frequency of resistant bacteria of only 27.3%, possibly indicating a slower detoxification. The statistical analysis (Pearson’s correlation = − 0,527) showed that the hypothesis about negative correlation between the incidence of bacterial resistance and the total mercury concentration in this environment is supported. Hence, all these data denote a moderate association between the distribution of resistant bacteria and the presence of mercury compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airey, D. & P. D. Jones, 1980. Mercury in the River Mersey, its a estuary and tributaries during 1973 and 1974. Wat.Res. 12: 565–577.

    Google Scholar 

  • Baldi, F. & G. J. Olson, 1987. Effects of cinnabar on pyrite oxidation by Thiobacillus ferroxidans and cinnabar mobilization by a mercury-resistant strain. Appl. envir. Microbiol. 53: 772–776.

    CAS  Google Scholar 

  • Barkay, T., 1985. Preparation of DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Appl. envir. Microbiol. 49: 686–692.

    CAS  Google Scholar 

  • Barkay, T. & B. H. Olson, 1986. Phenotypic and genotypic adaptation of aerobic heterotrofic sediment bacteria communities to mercury stress. Appl. envir. Microbiol. 52: 403–406.

    CAS  Google Scholar 

  • Barkay, T., 1987. Adaptation of aquatic microbial communities to Hg2+ stress Appl. envir. Microbiol. 53: 2725–2732.

    CAS  Google Scholar 

  • Barkay, T., C. Liebert & M. Gillman, 1989. Environmental significance of the potential for mer (Tn21)-mediated reduction of Hg2+ to Hg0in natural waters. Appl. envir. Microbiol. 55: 1196–1202.

    CAS  Google Scholar 

  • Barkay, T., M. Gilman & C. Liebert, 1990. Genes encoding mercuric recdutases from selected gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. Appl. envir. Microbiol. 56: 1695–1701.

    CAS  Google Scholar 

  • Barkay, T., R. Turner, E. Saouter & J. Horn, 1992. Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3: 147–159.

    Article  CAS  Google Scholar 

  • Capone, D. G., D. D. Reese & R. P. Riene, 1983. Effects of metals on methanogenesis, sulfatereduction carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Appl. envir. Microbiol. 45: 1586–1591.

    CAS  Google Scholar 

  • Duarte, R. G.,1979. Detecção de mercÚrio em tecidos de peixes. In I Seminário sobre poluição por metais pesados. Brasília. 170 pp.

  • Duty, S. B., 1994. River Rother Biological Quality Assessment; The Rother Project; unpublished SHU research.

  • Irukayama, K., 1977. Case history of Minamata disease. In T. Tubaki & K. Irukayama (eds), Minamata disease. Elsevier Science Publishing, inc., New York. 59 pp.

    Google Scholar 

  • Jonas, R. B., C. C. Gilmour, D. L. Stoner, M. M. Weir & J. H. Tuttle, 1984. Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl. envir. Microbiol. 47: 1005–1011.

    CAS  Google Scholar 

  • Kudo, A., S. Miyahara & D. R. Miller, 1980. Movement of mercury from Minamata bay into Yatsushiro sea. Prog. Wat. Technol. 12: 509–524.

    Google Scholar 

  • Lacerda, L. D. & W. Solomons,1991. Mercury in the Amazon; a chemical time bomb? Rio de Janeiro: RJ, CETEM/CNPq 46 pp.

    Google Scholar 

  • Lovley, D. R., 1993. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments.Tree 8: 213–217.

    Google Scholar 

  • Madigan, M. T., J. M. Martinko & J. Parker,1997. Brock-Biology of Microorganisms. Prentice-Hall, London, 986 pp.

    Google Scholar 

  • Merian, E. (ed.) 1991. Methods and their compounds in the environment. UCH-Verlag, Weiheim Germany.

    Google Scholar 

  • Nelson, J. D. & R. R. Colwell,1975. The ecology of mercuryresistant bacteria in Chesaspeake bay. Microb. Ecol. 1: 191–218.

    CAS  Google Scholar 

  • Nakamura, K., M. Sakamoto, H. Uchiyama & O. Yagi, 1990. Organomercurial-volatilizing bacteria in the mercury polluted sediment of Minamata bay, Japan. Appl. envir. Microbiol. 56: 304–305.

    CAS  Google Scholar 

  • Pan-Hou, H. S. & N. Imura, 1981. Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2 Arch. Microbiol. 129: 49–52.

    CAS  Google Scholar 

  • Pan-Hou, H. S., M. Nishimoto & N. Imura, 1981. Possible role of membrane proteins in mercury resistance of Enterobacter aerogenes. Arch. Microbiol. 130: 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. B. & O. H. Tuovinen, 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: Physiological, biochemical and genetic analyses. Microbiol Rev. 48: 95–124.

    PubMed  CAS  Google Scholar 

  • Silva, A. R. B., 1989. A contaminação ambiental nos garimpos de ouro na Amazônia. IN: CONGRESSO BRASILEIRO DE DEFESA DO MEIO AMBIENTE, 3, Rio de Janeiro: Clube de Engenharia/UFRJ, 1989. v.1, p. 436–455.

    Google Scholar 

  • Summers, A. O. & S. Siver, 1978. Microbial transformations of metal. Ann. Rev. Microbiol. 32: 637–672.

    Article  CAS  Google Scholar 

  • Summers, A. O., 1986. Organization, expression and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40: 607–634.

    Article  CAS  Google Scholar 

  • Vaituzis, Z., J. D. Nelson, J. W. Wan & R. R. Colwell, 1975. Effects of mercury chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl. envir. Microbiol. 29: 275–286.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cursino, L., Oberdá, S.M., Cecílio, R.V. et al. Mercury concentration in the sediment at different gold prospecting sites along the Carmo stream, Minas Gerais, Brazil, and frequency of resistant bacteria in the respective aquatic communities. Hydrobiologia 394, 5–12 (1999). https://doi.org/10.1023/A:1003541512505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003541512505

Navigation