Skip to main content
Log in

Hydrogen evolution, incorporation and removal in electroless nickel composite coatings on aluminium

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of electroless nickel deposition involves generation of hydrogen which can be entrapped in the NiP layer. In this study hydrogen evolution in several electroless composite coatings, that is, NiP–X (X=SiC, Al2O3 and boron particles), deposited on an aluminium (6063-T6) substrate, was investigated by the solid extraction method. It was found that particle codeposition can promote hydrogen occlusion in the layers, a fact correlated with the adsorption capacity and affinity of particles towards water or hydrogen itself. Hydrogen removal efficiency from coatings, after heat treatment, increased with the applied temperature (130, 160 and 190 °C for 1.5h each). For the same heat treatment (190 °C for 1.5h), most composite coatings showed lower removal efficiencies (35–54%) compared to NiP layer (80%) and, as the amount of hydrogen in the composite coating increased, its removal efficiency decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. DeLuccia, In: L. Raymond (ed.), Hydrogen Embrittlement: Prevention and Control, ASTM, Philadelphia, (1988) p. 17.

    Google Scholar 

  2. M. Zamanzadeh, A. Allam, C. Kato, B. Ateya and H.W. Pickering, J. Electrochem. Soc. 129 (1982) 284.

    Google Scholar 

  3. F.H. Froes, D. Eliezer and H.G. Nelson, In: A.W. Thompson and N.R. Moody (eds), Hydrogen Effects in Materials, Minerals, Metals & Materials Society, (1996) p. 719.

  4. D. Barker, Trans. Inst. Metal Finish. 71 (1993) 121.

    Google Scholar 

  5. P. Vansek, In: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 76th edn, CRC Press, (1995) p. 8–21.

  6. A. Brenner and G.E. Riddell, J. Res. Natl. Bur. Stand. 37 (1946) 31.

    Google Scholar 

  7. J.E.A.M. van den Meerakker, J. Appl. Electrochem. 11 (1981) 395.

    Google Scholar 

  8. W.D. Fields, R.N. Duncan, J.R. Zickgraf and The ASM Com-mittee on Electroless Nickel Plating, In: Metals Handbook, 9th edn, vol. 5, ASM, Metals Park, OH, (1982) p. 219.

    Google Scholar 

  9. W. Riedel, Electroless Nickel Plating, ASM International, Metals Park, OH, and Finishing Publications Ltd., Stevenage, UK, (1991) p. 17.

    Google Scholar 

  10. A. Szasz, D.J. Fabian, Z. Paal and J. Kojnok, J. Non-Cryst. Solids 103 (1988) 21.

    Google Scholar 

  11. P. Shewmon, Diffusion in Solids, 2nd edn, Minerals, Metals & Materials Society, Pennsylvania, (1989) p. 122.

    Google Scholar 

  12. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworths, London, (1976) p. 295.

    Google Scholar 

  13. P.D. Hess, J. Metals 25(10), (1973) 46.

    Google Scholar 

  14. L. Kowalski, B.M. Korevaar and J. Duszczyk, J. Mater. Sci. 27 (1992) 2770.

    Google Scholar 

  15. J.R. Davis and Associates (eds), Aluminium and Aluminium Alloys, ASM International, Materials Park, OH, (1993) p. 42.

    Google Scholar 

  16. J.H. ter Haar and J. Duszczyk, J. Mater. Sci. 28 (1993) 3103.

    Google Scholar 

  17. J.W. Golby and J.K. Dennis, Surf. Technol. 12 (1981) 141.

    Google Scholar 

  18. D.S. Lashmore, Plat. Surf. Finish. 67 (1980) 37.

    Google Scholar 

  19. S. Wernick, R. Pinner and P.G. Sheasby (eds), The Surface Treatment and Finishing of Aluminium and its Alloys, 5th edn, vol.2, chapter 14, ASM International, Metals Park, OH and Finishing Publications Ltd., Teddington, UK, (1987) p. 1024.

    Google Scholar 

  20. K.P. Thurlow, Trans. Inst. Metal Finish. 67 (1989) 82.

    Google Scholar 

  21. B. Chatterjee and R.W. Thomas, Trans. Inst. Metal Finish. 54 (1976) 17.

    Google Scholar 

  22. F.J. Monteiro and D.H. Ross, Trans. Inst. Metal Finish. 62 (1985) 155.

    Google Scholar 

  23. J. Dugasz and A. Szasz, Surf. Coat. Technol. 58 (1993) 57.

    Google Scholar 

  24. L.M. Abrantes and J.P. Correia, J. Electrochem. Soc. 141 (1994) 2356.

    Google Scholar 

  25. I. Apachitei, J. Duszczyk, L. Katgerman and P.J.B. Overkamp, Scripta Mater. 38 (1998) 1383.

    Google Scholar 

  26. I. Apachitei, J. Duszczyk, L. Katgerman and P.J.B. Overkamp, Scripta Mater. 38 (1998) 1347.

    Google Scholar 

  27. Y. Murakami, In: R.W. Cahn, P. Haasen and E.J. Kramer (eds), vol. 8, Materials Science and Technology: A Comprehensive Treatment, Structure and Properties of Nonferrous Alloys, K.H. Matucha (vol. ed.), VCH, Weinheim, Germany (1996) p. 248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apachitei, I., Duszczyk, J. Hydrogen evolution, incorporation and removal in electroless nickel composite coatings on aluminium. Journal of Applied Electrochemistry 29, 835–841 (1999). https://doi.org/10.1023/A:1003526709182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003526709182

Navigation