Skip to main content
Log in

Photocatalytic degradation rate of oxalic acid on the semiconductive layer of n-TiO2 particles in the batch mode plate reactor Part I: Mass transfer limits

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Organic compounds dissolved in water can be decomposed on a layer of n-TiO2 particles irradiated by u.v. light, which generates holes and electrons in the TiO2 material. Dissolved oxygen was used as electron scavenger and holes reacted with water to give OH radicals. The rate of degradation of the dissolved organic compounds by OH radicals is limited by the transfer of either oxygen or of theorganic compounds to the surface of n-TiO2 particles. The consequence of these limits is that, in the batch mode reactor with recirculation of the liquid, the dependence of the concentration of an organic compound on time has either a linear or an exponential form. Experiments with decomposition of oxalic acid in aqueous solutions using a plate reactor (60 cm × 120 cm) confirmed the analysis. Equations for evaluation of the mass transfer coefficient of the dissolved species to the surface of the plate reactor with a moving liquid fil m were developed for the case of the thickness of the Nernst diffusion layer being thinner than the thickness of the liquid. The experimentally obtained decomposition rate of oxalic acid was about 60 to 80% of the theoretical decomposition rate limited by oxygen flux through the film of a moving liquid. The present theory neglects the diffusion of oxygen into the porous layer of n-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abstracts of the First International Conference on Advanced Oxidation Technologies for Water and Air Treatment, London, Ontario, Canada, 25–30 June (1994).

  2. F. A. DiGiano, in ‘Control of Organic Substances in Water and Wastewater’ (edited by B. B. Berger), Noyes Data Corporation, New Jersey (1987) Chapter 3.

    Google Scholar 

  3. J. J. Rook, Water Treatment and Examination 23 (1974) 234.

    Google Scholar 

  4. T. A. Bellar, J. J. Lichtenberg and R. C. Kroner, J. American Water Works Association 66 (1974) 703.

    Google Scholar 

  5. J. J. Rook, Environ. Sci. Tech. 11 (1977) 478.

    Google Scholar 

  6. R. Rife, T. W. Thomas, D. W. Norberg, R. L. Fournier, F. G. Rinker and M. S. Bonomo, Environ. Prog. 8 (1989) 167.

    Google Scholar 

  7. R. B. Pojasek, ‘Toxic and Hazardous Waste Disposal’, Ann Arbor Science, Ann Arbor, MI (1979), Vols. I-IV.

    Google Scholar 

  8. J. B. Kim, C. S. Gee, J. T. Bandy and C. S. Huang, J. Water Pollut. Control Fed. 63 (1991) 501.

    Google Scholar 

  9. H. M. Freedman, ‘Incinerating Hazardous Wastes,’ Technomic Publishing Co., Lancaster, PA (1988), p. 375.

    Google Scholar 

  10. D. J. De Renzo, J. Biodegradation Techniques for Industrial Organic Wastes, Noyes Data Corporation, Park Ridge, NJ (1980), p. 358.

    Google Scholar 

  11. M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahneman, Chem. Rev. 95 (1995) 1.

    Google Scholar 

  12. H. Gerischer, Electrochim. Acta 38 (1993) 3.

    Google Scholar 

  13. E. Pellizeti and C. Minero, ibid. 38 (1993) 47.

    Google Scholar 

  14. D. Bockelmann, PhD. thesis, ‘Photocatalytical Solar Treatment of Waste Water’, Technical University Clausthal, Germany (1993).

    Google Scholar 

  15. R. I. Bickley, T. Gonzales-Carreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Sol. State Chem. 92 (1991) 178.

    Google Scholar 

  16. S. L. Wilkinson and W. A. Anderson, in Abstracts of the First International Conference, op. cit. [1], p. 299.

  17. K. Hashimoto and A. Fujishima, in Abstracts of the First International Conference, op. cit. [1], p. 311.

  18. J. F. Kenneke and W. H. Glaze, in Proceedings of the Symposium on Water Purification by Photocatalytic, Photoelectrochemical and Electrochemical Processes, The Electrochemical Society, 94 (1994) 365.

    Google Scholar 

  19. D. F. Ollis, E. Pelizzeti and N. Serpone, in ‘Photocatalytic Fundamentals and Application’ (edited by N. Serpone and E. Pelizzeti), Wiley, New York (1989), p. 625.

    Google Scholar 

  20. R. W. Mathews, J. Phys. Chem. 91 (1987) 3328.

    Google Scholar 

  21. C. S. Turchi and D. F. Ollis, J. Phys. Chem. 92 (1988) 6852.

    Google Scholar 

  22. R. W. Mathews, ibid. 92 (1988) 6853.

    Google Scholar 

  23. H. Brauner, ‘Grundlagen der Einphasen-und Mehrphasenstroemungen’, Verlag Sauerlaender Aarau, Frankfurt/Main (1971), p. 674.

    Google Scholar 

  24. F. Goodridge and G. Gartside, Trans. Inst. Chem. Eng. 43 (1965) 62.

    Google Scholar 

  25. I. Rousar, J. Hostomský, V. Cezner, B. {ie853–02}tverák, J. Electrochem. Soc. 118 (1971) 881.

    Google Scholar 

  26. K. Javdani, Chem. Eng. Sci. 29 (1974) 61.

    Google Scholar 

  27. J. F. Rabek, ‘Experimental Methods in Photochemistry and Photophysics’, Part II., J. Wiley & Sons, Chichester (1982), p. 947.

    Google Scholar 

  28. G. Houghton, P. D. Ritchi and J. A. Thomson, Chem. Eng. Sci. 17 (1962) 221.

    Google Scholar 

  29. Anonymous, ‘Physico-chemical Tables,’ SNTL, Prague (1953).

  30. C. H. Pollema and J. L. Hendrix, J. Photochem. Photobiol. A: Chem. 66 (1992) 235.

    Google Scholar 

  31. J. Cunningham and Ghassam Al-Sayyed, J. Chem. Soc., Faraday Trans. 86 (1990) 3935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulas, J., Roušar, I., Krýsa, J. et al. Photocatalytic degradation rate of oxalic acid on the semiconductive layer of n-TiO2 particles in the batch mode plate reactor Part I: Mass transfer limits. Journal of Applied Electrochemistry 28, 843–853 (1998). https://doi.org/10.1023/A:1003492510056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003492510056

Navigation