Skip to main content
Log in

Photocatalytic abatement of naphthalene catalyzed by nanosized TiO2 particles: Assessment of operational parameters

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Naphthalene removal from wastewater sources was investigated in a batch slurry system using photocatalytic process as a subset of advanced oxidation processes. At low concentrations of naphthalene, the pseudo-first order rate equation on the base of Langmuir-Hinshelwood model described the degradation kinetics very well. Also, the photocatalytic process was employed to evaluate the effect of various operational parameters such as agitation speed (0–200 rpm), injected air flow (0–6 L/h), TiO2 concentration (0–3 g/L) and UV power intensity (0–24 W). Experimental results demonstrated that by increment in the mass transfer coefficient, the agitation speed positively affected naphthalene degradation. Due to the “screening effect”, concentration of TiO2 showed an optimum amount equal to 2 g/L. Aeration to the solution affected the amount of oxygen as an electron scavenger and so enhanced naphthalene degradation rate. Meanwhile in the absence of UV radiation to the solution, the rate of naphthalene removal decreased significantly. In other hand, augmentation in UV radiation more than 8 W had a low influence on the amount of removed naphthalene and reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theurich, J. and Bahnemann, D.W., Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway, Res. Chem. Intermed., 1997, vol. 23, pp. 247–274.

    Article  CAS  Google Scholar 

  2. Garcia-Martinez, M.J., Canoira, L., Blazquez, G., Da Riva, I., Alcantara, R., and Llamas J. F., Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings, Chem. Eng. J., 2005, vol. 110, pp. 123–128.

    Article  CAS  Google Scholar 

  3. Sun, Y.Z. Fan, J.S., Qin, P., and Niu, H.Y., Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, Environ. Geochem. Health, 2009, vol. 31, pp. 81–89.

    Article  CAS  Google Scholar 

  4. Esplugas, S., Gimenez, J., Contreas, S., Pascual, E., and Rodriguez, M., Comparison of different advanced oxidation processes for phenol degradation, Water Res., 2002, vol. 36, pp. 1034–1042.

    Article  CAS  Google Scholar 

  5. Pera-Titus, M., Garcia-Molina, V., Banos, M., Gimenez, J., and Esplugas, S., Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 2004, vol. 47, pp. 219–256.

    Article  CAS  Google Scholar 

  6. Chong, M.N., Jin, B., Chow, W.K., and Saint, C., Recent developments in photocatalytic water treatment technology: A review, Water Res., 2010, vol. 44, p. 2997–3207.

    Article  CAS  Google Scholar 

  7. Kansal, S.K., Ali, A.H., and Kapoor, A.S., Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts, Desalination, 2010, vol. 259, pp. 147–155.

    Article  CAS  Google Scholar 

  8. Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., and Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: recent over-view and trends, Catal. Today, 2009, vol. 147, pp. 1–59.

    Article  CAS  Google Scholar 

  9. Shipra Mital Gupta and Manoj Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull., 2011, vol. 56, pp. 1639–1657.

    Article  CAS  Google Scholar 

  10. JianLing Zhang, XingWang Zhang, and LeCheng Lei, Modification of TiO2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties, Chin. Sci. Bull., 2008, vol. 53, pp. 1929–1932.

    Article  CAS  Google Scholar 

  11. Shahmoradi, B., Ibrahim, I.A., Sakamoto, N., Ananda, S., Somashekar, R., Gururow, T.N., and Byrappa, K., Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles, J. Environ. Sci. Health A, 2010, vol. 45, pp. 1248–1255.

    Article  CAS  Google Scholar 

  12. Yan Wang, JiWei Zhang, ZhenSheng Jin, ZhiShen Wu, and ShunLi Zhang, Visible light photocatalytic decoloration of methylene blue on novel N-doped TiO2, Chin. Sci. Bull., 2007, vol. 52, pp. 2157–2160.

    Article  CAS  Google Scholar 

  13. HuiMin Zhao, Yue Chen, Xie Quan, and XiuLi Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation, Chin. Sci. Bull., 2007, vol. 52, pp. 1456–1461.

    Article  CAS  Google Scholar 

  14. Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., and Fukunaga, S., Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane, Desalination, 2005, vol. 181, pp. 121–133.

    Article  CAS  Google Scholar 

  15. Shon, H.K., Phuntsho, S., and Vigneswaran, S., Effect of photocatalysis on the membrane hybrid system for wastewater treatment, Desalination, 2008, vol. 225, pp. 235–248.

    Article  CAS  Google Scholar 

  16. Damszel, J.G., Tomaszewska, M., and Morawski, A.W., Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes, Desalination, 2009, vol. 241, pp. 118–126.

    Article  Google Scholar 

  17. Park, J.H., Photochemical degradation and toxicity reduction of methyl 1-[(butylamino)carbonyl]-1H-benzimidazol-2-ylcarbamate in agricultural wastewater: comparative study of photocatalysis and sonophotocatalysis, Desalination, 2009, vol. 249, pp. 480–485.

    Article  CAS  Google Scholar 

  18. Katsoni, A., Gomes, H.T., Pastrana-Martinez, A.M., Faria, J.L., Figueiredo, J.L., Mantzavinos, D., and Silva, A.M.T., Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis, Chem. Eng. J., 2011, vol. 172, pp. 634–640.

    Article  CAS  Google Scholar 

  19. Song, L., Zeng, X., and Zheng, X., Photocatalytic activities of TiO2 modified by poly(fluorene-co-bithiophene) under visible light, Int. Proc. Chem., Biol., Environ. Eng., 2010, vol. 1, 364–367.

    Google Scholar 

  20. Gang Wei, Yuanjing Zhang, and Rongchun Xiong, Photocatalytic degradation kinetics of Rhodamine B catalyzed by nanosized TiO2 film, Chin. Sci. Bull., 2003, vol. 48, pp. 49–52.

    Article  CAS  Google Scholar 

  21. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., and Hashib, M.A., Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 2010, vol. 261, pp. 3–18.

    Article  CAS  Google Scholar 

  22. Onho, T., Tokieda, K., Higashida, S., Matsumura, M., Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene, Appl. Catal., A, 2003, vol. 244, pp. 383–391.

    Article  Google Scholar 

  23. Lair, A., Ferronato, C., Chovelon, J., and Herrmann, J., Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions, J. Photochem. Photobiol., A, 2008, vol. 193, pp. 193–203.

    Article  CAS  Google Scholar 

  24. Pramauro, E., Bianco, P.A., Vincenti, M., and Gamberini, R., Photocatalytic degradation of Naphthalene in aqueous TiO 2 dispersions: effect of nonionic surfactants, Chemosphere, 1998, vol. 36, pp. 1523–1542.

    Article  CAS  Google Scholar 

  25. Colina-Marquez, J., Zuluaga, L., and Martinez, F., Evaluation of the titanium dioxide photocatalysis for the degradation of a commercial pesticides mixture, Ing. Desarrollo, 2009, vol. 26, pp. 156–167.

    Google Scholar 

  26. Zhao, H., Xu, S., Zhong, J., Bao, X., Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems, Catal. Today, 2004, vols. 93–95, pp. 857–861.

    Article  Google Scholar 

  27. Hoffmann, M., Martin, S., Choi, W., and Bahnemann, D., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, vol. 95, pp. 69–96.

    Article  CAS  Google Scholar 

  28. Kamble, S., Sawant, S., and Pangarkar, V., Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photo-reactor, J. Hazard. Mater., 2007, vol. 140, pp. 149–154.

    Article  CAS  Google Scholar 

  29. Huang, X., Leal, M., Li, Q., Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes, Water Res., 2008, vol. 42, pp. 1142–1150.

    Article  CAS  Google Scholar 

  30. Kumar, K., Porkodi, K., and Selvaganapathi, A., Constrain in solving LangmuireHinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst, Dyes Pigm., 2007, vol. 75, pp. 246–249.

    Article  CAS  Google Scholar 

  31. Barrios, N., Sivov, P., D’Andrea, D., Nunez, O., Conditions for selective photocatalytic degradation of naphthalene in triton X-100 water solutions, Int. J. Chem. Kinet., 2005, vol. 37, pp. 414–419.

    Article  CAS  Google Scholar 

  32. Kamble, S., Sawant, S., and Pangarkar, V., Batch and continuous photocatalytic degradation of benzene-sulfonic acid using concentrated solar radiation, Ind. Eng. Chem. Res., 2003, vol. 42, pp. 6705–6713.

    Article  CAS  Google Scholar 

  33. Hong, C., Wang, Y., and Bush, B., Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorobiphenyl in water, Chemosphere, 1998, vol. 36, pp. 1653–1667.

    Article  CAS  Google Scholar 

  34. Ohtani, B., Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation, Chem. Lett., 2008, vol. 37, pp. 216–229.

    Article  Google Scholar 

  35. Wu, C.H., Chang, H.W., and Chern, J.M., Basic dye decomposition kinetics in a photocatalytic slurry reactor, J. Hazard. Mater., 2006, vol. 137, pp. 336–343.

    Article  CAS  Google Scholar 

  36. Fogler, H.S., Elements of Chemical Reaction Engineering, Delhi: Prentice-Hall of India, 2004.

    Google Scholar 

  37. Mahvi, A., Ghanbarian, M., Nasseri, S., and Khairi, A., Mineralization and discoloration of textile wastewater by TiO2 nanoparticles, Desalination, 2009, vol. 239, p. 309–316.

    Article  CAS  Google Scholar 

  38. Ollis, D.F., Pelizzetty, E., and Serpone, N., Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 1991, vol. 25, pp. 1523–1529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mahmoodi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, V., Sargolzaei, J. Photocatalytic abatement of naphthalene catalyzed by nanosized TiO2 particles: Assessment of operational parameters. Theor Found Chem Eng 48, 656–666 (2014). https://doi.org/10.1134/S0040579514050194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514050194

Keywords

Navigation