Skip to main content
Log in

Development of a novel metal hydride–air secondary battery

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30mAcm−2 in 6m KOH, the air electrode potentials were −0.2V (oxygen reduction) and +0.65V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10mAcm−2). The average discharge/charge voltages of the cell were 0.65 and 1.6V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Anani, A. Visintin, K. Petrov, S. Srinivasan, J. J. Reilly, J. R. Johnson, R. Schwarz and P. Desch, J. Power Sources 47 (1994) 261.

    Google Scholar 

  2. P. Folonary, G. Iemmi, F. Manfredi and A. Rolle, J. Less-Comm. Met. 74 (1980) 371.

    Google Scholar 

  3. K. Videm, in ‘Hydrides for Energy Storage’ (edited by A. F. Andersen and A. E. Maeland), Pergamon Press (1978).

  4. D. Linden (Ed.), ‘Handbook of batteries’, McGraw-Hill, New York (1996), p. 35.11

    Google Scholar 

  5. H. Sakai, T. Iwaki, Z. Ye, D. Noreus and O. Lindstrom, 186th ECS Meeting, Miami FL, 9-14 Oct., 1994, Extended Abstracts, Abstr. 68, p. 108.

    Google Scholar 

  6. H. Sakai, T. Iwaki, Z. Ye, D. Noreus and O. Lindstrom, J. Electrochem. Soc. 142 (1995) 4040.

    Google Scholar 

  7. A. J. Appleby, G. Crepy and G. Feuillate, Power Sources 6 (edited by D. H. Collins), Academic Press, London (1977), p. 549.

    Google Scholar 

  8. O. C. Wagner, J. Electrochem. Soc. 116 (1969) 693.

    Google Scholar 

  9. L. Carlsson and L. Ojefors, ibid. 127 (1980) 525.

    Google Scholar 

  10. A. C. C. Tseung and K. L. K. Yeung, ibid. 125 (1978) 1003.

    Google Scholar 

  11. Y. Shimizu, K. Uemura, H. Matsuda, N. Miura and N. Yamazoe, ibid. 137 (1990) 3430.

    Google Scholar 

  12. H. S. Horovitz, J. M. Longo and H. H. Horovitz, ibid. 130 (1983) 1851.

    Google Scholar 

  13. E. S. Buzzelli, C. T. Liu and W. A. Briant, ‘Proc. of the 12th IECEC’, San Diego, CA (1978), p. 745.

  14. S. Gamburzev, unpublished results (1980).

  15. S. Gamburzev, A. Kaisheva, P. Atanassov and I. Iliev, Bulgarian Patent 93 611 (10 Jan. 1991).

  16. I. Iliev, S. Gamburzev, A. Kaisheva and J. Mrha, J. Appl. Electrochem. 5 (1975) 291.

    Google Scholar 

  17. M. M. Dubinin, in ‘Metodi issledovaniya katalizatorov i kataliticeckih reakcij’, Nauka, Novosibirsk, No. 4 (1971), pp. 37–55.

    Google Scholar 

  18. S. Gamburzev, Elektrokhimya 18 (1982) 134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamburzev, S., Zhang, W., Velev, O.A. et al. Development of a novel metal hydride–air secondary battery. Journal of Applied Electrochemistry 28, 545–549 (1998). https://doi.org/10.1023/A:1003229514453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003229514453

Navigation