Skip to main content

Recent Developments in Organic Electrodes for Metal-Air Batteries

  • Chapter
  • First Online:
Organic Electrodes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 743 Accesses

Abstract

Recently, the ongoing rapid development of electric transportation technology and stationary applications is the most important reason for the ever-increasing demand for advanced electrochemical energy storage devices. Metal-air batteries (MABs) are viewed as promising energy suppliers thanks to their advantages in terms of high theoretical energy density and safety. The electrode materials are the most important components, determining the performance of batteries and realizing their practical applications. Up to now, various types of air electrodes, such as noble metals and carbon-based materials, have been reported in MAB applications. Besides, on the anode side, coating and alloying strategies using metals and carbon materials have been employed to suppress the main issues like dendrite formation and corrosion of the anode. The attention rate on organic compounds as active materials are rising in energy storage devices due to their electrochemical performance, diversity in the structures, and flexibility. However, despite the many attempts toward using organic materials in MIBs, these materials are barely reported as electrodes for air batteries. In this chapter, a brief explanation of the MAB configuration and the reaction mechanisms at air electrodes is provided. Then, the most recent developments and progress of organic-based electrodes in these batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, A.L., Wilkinson, D.P., Zhang, X., Xing, Y., Rozhin, A.G., Kulinich, S.A.: Zinc regeneration in rechargeable zinc-air fuel cells—a review. J. Energy Storage 8, 35–50 (2016)

    Article  Google Scholar 

  2. Yi, J., Liu, X., Liang, P., Wu, K., Xu, J., Liu, Y., Zhang, J.: Non-noble iron group (Fe Co, Ni)-based oxide electrocatalysts for aqueous zinc-air batteries: recent progress, challenges, and perspectives. Organometallics 38, 1186–1199 (2019)

    Article  CAS  Google Scholar 

  3. Zhu, B., Liang, Z., Xia, D., Zou, R.: Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater. 23, 757–771 (2019)

    Article  Google Scholar 

  4. Jung, H.-G., Jeong, Y.S., Park, J.-B., Sun, Y.-K., Scrosati, B., Lee, Y.J.: Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 7, 3532–3539 (2013)

    Article  CAS  Google Scholar 

  5. Schon, T.B., McAllister, B.T., Li, P.-F., Seferos, D.S.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016)

    Article  CAS  Google Scholar 

  6. Zhang, S., Ren, S., Han, D., Xiao, M., Wang, S., Sun, L., Meng, Y.: A highly immobilized organic anode material for high performance rechargeable lithium batteries. ACS Appl. Mater. Interfaces 12, 36237–36246 (2020)

    Article  CAS  Google Scholar 

  7. Lee, D.J., Lee, H., Song, J., Ryou, M.-H., Lee, Y.M., Kim, H.-T., Park, J.-K.: Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries. Electrochem. Commun. 40, 45–48 (2014)

    Article  CAS  Google Scholar 

  8. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  CAS  Google Scholar 

  9. Yu, X., Zhou, T., Ge, J., Wu, C.: Recent advances on the modulation of electrocatalysts based on transition metal nitrides for the rechargeable Zn-Air battery. ACS Mater. Lett. 2, 1423–1434 (2020)

    Google Scholar 

  10. Kundu, A., Mallick, S., Ghora, S., Raj, C.R.: Advanced oxygen electrocatalyst for air-breathing electrode in Zn-Air batteries. ACS Appl. Mater. Interfaces 13, 40172–40199 (2021)

    Article  Google Scholar 

  11. Kang, J.-H., Lee, J., Jung, J.-W., Park, J., Jang, T., Kim, H.-S., Nam, J.-S., Lim, H., Yoon, K.R., Ryu, W.-H., Kim, I.-D., Byon, H.R.: Lithium-air batteries: air-breathing challenges and perspective. ACS Nano 14, 14549–14578 (2020)

    Article  Google Scholar 

  12. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 578–580 (1977)

    Google Scholar 

  13. Bi, W., Gao, G., Wu, G., Atif, M., AlSalhi, M.S., Cao, G.: Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Mater. 40, 209–218 (2021)

    Article  Google Scholar 

  14. Lu, Q., Zhao, Q., Zhang, H., Li, J., Wang, X., Wang, F.: Water dispersed conducting polyaniline nanofibers for high-capacity rechargeable lithium-oxygen battery. ACS Macro Lett. 2, 92–95 (2013)

    Article  CAS  Google Scholar 

  15. Cui, R., Xiao, Y., Li, C., Han, Y., Lv, G., Zhang, Z.: Polyaniline/reduced graphene oxide foams as metal-free cathodes for stable lithium–oxygen batteries. Nanotechnology 31, 445402 (2020)

    Google Scholar 

  16. Cao, D., Shen, X., Wang, Y., Liu, J., Shi, H., Gao, X., Liu, X., Fu, L., Wu, Y., Chen, Y.: Conductive polymer coated cathodes in Li–O2 batteries. ACS Appl. Energy Mater. 3, 951–956 (2020)

    Article  CAS  Google Scholar 

  17. Kim, C.H.J., Varanasi, C.V., Liu, J.: Synergy of polypyrrole and carbon x-aerogel in lithium–oxygen batteries. Nanoscale 10, 3753–3758 (2018)

    Article  CAS  Google Scholar 

  18. Yoon, S.H., Kim, J.Y., Park, Y.J.: Carbon-free polymer air electrode based on highly conductive PEDOT micro-particles for Li–O2 batteries. J. Electrochem. Sci. Technol. 9, 220–228 (2018)

    Article  CAS  Google Scholar 

  19. Xie, X., Fang, Z., Yang, M., Zhu, F., Yu, D.: Harvesting air and light energy via “all-in-one” polymer cathodes for high-capacity, self-chargeable, and multimode-switching zinc batteries. Adv. Func. Mater. 31, 2007942 (2021)

    Article  CAS  Google Scholar 

  20. Chameh, B., Moradi, M., Hessari, F.A.: Decoration of metal organic frameworks with Fe2O3 for enhancing electrochemical performance of ZIF-(67 and 8) in energy storage application. Synth. Met. 269, 116540 (2020)

    Google Scholar 

  21. Jafari, E.A., Moradi, M., Borhani, S., Bigdeli, H., Hajati, S.: Fabrication of hybrid supercapacitor based on rod-like HKUST-1@polyaniline as cathode and reduced graphene oxide as anode. Phys. E Low-Dimensional Syst. Nanostruct. 99, 16–23 (2018)

    Article  CAS  Google Scholar 

  22. Chameh, B., Moradi, M., Kaveian, S.: Synthesis of hybrid ZIF-derived binary ZnS/CoS composite as high areal-capacitance supercapacitor. Synth. Met. 260, 116262 (2020). https://doi.org/10.1016/j.synthmet.2019.116262

  23. Sanati, S., Abazari, R., Morsali, A., Kirillov, A.M., Junk, P.C., Wang, J.: An asymmetric supercapacitor based on a non-calcined 3D pillared Cobalt(II) metal-organic framework with long cyclic stability. Inorg. Chem. 58, 16100–16111 (2019)

    Article  CAS  Google Scholar 

  24. Pan, N., Zhang, H., Yang, B., Qiu, H., Li, L., Song, L., Zhang, M.: Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn–air batteries. Chem. Commun. 56, 13615–13618 (2020)

    Article  CAS  Google Scholar 

  25. Kim, S.H., Lee, Y.J., Kim, D.H., Lee, Y.J.: Bimetallic metal-organic frameworks as efficient cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 10, 660–667 (2018)

    Article  Google Scholar 

  26. Xiao, Y., Guo, B., Zhang, J., Hu, C., Ma, R., Wang, D., Wang, J.: A bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Dalton Trans. 49, 5730–5735 (2020)

    Article  CAS  Google Scholar 

  27. Côté, A.P., Benin, A.I., Ockwig, N.W., Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005)

    Article  Google Scholar 

  28. Peng, P., Shi, L., Huo, F., Zhang, S., Mi, C., Cheng, Y., Xiang, Z.: In situ charge exfoliated soluble covalent organic framework directly used for Zn–Air flow battery. ACS Nano 13, 878–884 (2019)

    Article  Google Scholar 

  29. Li, Z., Zhao, W., Yin, C., Wei, L., Wu, W., Hu, Z., Wu, M.: Synergistic effects between doped nitrogen and phosphorus in metal-free cathode for zinc-air battery from covalent organic frameworks coated CNT. ACS Appl. Mater. Interfaces 9, 44519–44528 (2017)

    Article  CAS  Google Scholar 

  30. Hosokawa, T., Tsuji, M., Tsuchida, K., Iwase, K., Harada, T., Nakanishi, S., Kamiya, K.: Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 9, 11073–11080 (2021)

    Article  CAS  Google Scholar 

  31. Huang, H., Li, F., Zhang, Y., Chen, Y.: Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 7, 5575–5582 (2019)

    Article  CAS  Google Scholar 

  32. Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S.: Extraction and characterization of lignin from different biomass resources. J. Market. Res. 4, 26–32 (2015)

    CAS  Google Scholar 

  33. Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., Yu, F., Du, J., Chen, Y.: A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 299, 19–26 (2019)

    Article  CAS  Google Scholar 

  34. Wang, Y., Jin, M., Zhang, X., Zhao, C., Wang, H., Li, S., Liu, Z.: Direct conversion of biomass into compact air electrode with atomically dispersed oxygen and nitrogen coordinated copper species for flexible zinc-air batteries. ACS Appl. Energy Mater. 2, 8659–8666 (2019)

    Article  CAS  Google Scholar 

  35. Li, S., Zhao, W., Zhang, N., Luo, Y., Tang, Y., Du, G., Wang, C., Zhang, X., Li, L.: A tough flexible cellulose nanofiber air cathode for oxygen reduction reaction with silver nanoparticles and carbon nanotubes in rechargeable zinc-air batteries. Energy Fuels 35, 9017–9028 (2021)

    Article  CAS  Google Scholar 

  36. Ye, H., Zhang, Y., Yin, Y.-X., Cao, F.-F., Guo, Y.-G.: An outlook on low-volume-change lithium metal anodes for long-life batteries. ACS Cent. Sci. 6, 661–671 (2020)

    Article  CAS  Google Scholar 

  37. Ma, J., Wen, J., Gao, J., Li, Q.: Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions. J. Power Sources 253, 419–423 (2014)

    Google Scholar 

  38. Deyab, M.A., Essehli, R., El Bali, B.: Performance evaluation of phosphite NaCo(H2PO3)3⋅H2O as a corrosion inhibitor for aluminum in engine coolant solutions. RSC Adv. 5, 48868–48874 (2015)

    Article  CAS  Google Scholar 

  39. Buonaiuto, M., Neuhold, S., Schroeder, D.J., Lopez, C.M., Vaughey, J.T.: Functionalizing the surface of lithium-metal anodes. ChemPlusChem 80, 363–367 (2015)

    Article  CAS  Google Scholar 

  40. Jo, Y.N., Kang, S.H., Prasanna, K., Eom, S.W., Lee, C.W.: Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries. Appl. Surf. Sci. 422, 406–412 (2017)

    Article  CAS  Google Scholar 

  41. Stock, D., Dongmo, S., Damtew, D., Stumpp, M., Konovalova, A., Henkensmeier, D., Schlettwein, D., Schröder, D.: Design strategy for zinc anodes with enhanced utilization and retention: electrodeposited zinc oxide on carbon mesh protected by ionomeric layers. ACS Appl. Energy Mater. 1, 5579–5588 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moradi, M., Borhani, S., Pooriraj, M. (2022). Recent Developments in Organic Electrodes for Metal-Air Batteries. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_12

Download citation

Publish with us

Policies and ethics