Skip to main content
Log in

Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eutrophication in Tjeukemeer involved a gradualincrease in chlorophyll concentrations from ca. 30 mg m-3in 1968–69 to 125 mg m-3 in 1976.From 1976 onwards, chlorophyll concentrations remainedat a high level fluctuating between100–225 mg m-3. Hillbricht-Illkowska (1977)hypothesized that small-bodied species will becomeincreasingly abundant and dominant over large-bodiedspecies with increasing eutrophication. We tested thishypothesis using observations from life historyexperiments on Chydorus sphaericus, combinedwith data from 25 years of field observations on thepopulation dynamics of cladocerans in Tjeukemeer.In life history experiments with C. sphaericus,the fitness measure r in treatments with naturallake seston and laboratory cultured green algae wassignificantly higher on lake seston from Tjeukemeer,containing a high proportion of detritus. Thissuggests that detrital particles are good quality foodfor C. sphaericus. Field observations during theperiod 1968–1976 showed that all three categories ofcladocerans: C. sphaericus,'other' small-bodiedcladocerans (predominantly Bosmina spp.) andlarge-bodied cladocerans (predominantly Daphniagaleata), increased in biomass with increasingchlorophyll concentration. However, of these threecladoceran categories only sphaericus showeda distinct and significant increase whereas the othertwo only showed a marginally significant increase.During the period 1977–1992, both 'other' small-bodiedcladocerans and C. sphaericus significantlydecreased in biomass with increasing chlorophyllconcentration, whereas the biomass of the large-bodiedcladocerans significantly increased with increasingchlorophyll content. These observations are not inagreement with the hypothesis that small-bodiedzooplankton become increasingly abundant withincreasing eutrophication. We suggest that theobserved trends are partially caused by a food effect,and partially caused by predation pressure. Daphnia shows a better response to the increase indetritus and filaments of Cyanobacteria thansmall-bodied cladocerans, but is more vulnerable tofish predation. Densities of 0+ zooplanktivorous fishshow strong annual fluctuations in Tjeukemeer, andbecause of hydrological conditions, 0+ fish abundancein this lake is probably negatively related tochlorophyll content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balseiro, E. G., B. E. Modenutti & C. P. Queimalinos, 1992. The coexistence of Bosminaand Ceriodaphniain a south Andes lake–an analysis of demographic responses. Freshwat. Biol. 28: 93–101.

    Google Scholar 

  • Benke, A. C., 1993. Edgardo Baldi Memorial Lecture: Concepts and patterns of invertebrate production in running waters. Verh. int. Ver. Limnol. 25: 15–38.

    Google Scholar 

  • Boersma, M., 1995. Competition as a factor regulating population dynamics of Daphniaspecies in Tjeukemeer. Oecologia 103: 309–318.

    Google Scholar 

  • Boersma, M. & J. Vijverberg, 1994. Possible toxic effects on Daphnia resulting from the green alga Scenedesmus obliquus. Hydrobiologia 294: 99–103.

    Google Scholar 

  • Brooks, J. L., 1969. Eutrophication and changes in the composition of zooplankton. In Rohlich, G. A. (ed.), Eutrophication: Causes, Consequences, Correctives. Proc. of the International Symposium. Natl Acad. Sci. Washington, D.C.: 36–255.

  • Burns, C. W., 1968. Direct observations of mechanisms regulating feeding behavior of Daphniain lake water. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  • Cummins, K. W., R. R. Costa, R. E. Rowe, G. A. Moshiri, R. M. Scanlon & R. K. Zajdel, 1969. Ecological energetics of a natural population of the predaceous zooplankter Leptodora kindtii(Focke) (Cladocera). Oikos 20: 189–223.

    Google Scholar 

  • Daggett, R. F. & C. C. Davis, 1974. A seasonal quantitative study of the littoral Cladocera and Copepoda in a bog pond and an acid marsh in New Foundland. Int. Revue ges. Hydrobiol. 59: 667–683.

    Google Scholar 

  • DeMott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans: Nature of the interactions between Bosminaand Daphnia. Ecology 6: 1949–1966.

    Google Scholar 

  • Densen, W. L. T. van & J. Vijverberg, 1982. The relationship between 0+ fish density, zooplankton size and the vulnerability of pikeperch, Stizostedion lucioperca, to angling in the Frisian lakes. Hydrobiologia 95: 321–336.

    Google Scholar 

  • Duncan, A., 1989. Food limitation and body size in the life cycles of planktonic rotifers and cladocerans. Hydrobiologia 186/187: 11–28.

    Google Scholar 

  • Epp, G. T., 1996. Grazing on filamentous cyanobacteria by Daphnia pulicaria. Limnol. Oceanogr. 41: 560–567.

    Google Scholar 

  • Ewald, S., 1991. Long-term changes of crustacean plankton during successful restoration of Lake Schlachtensee (Berlin-West). Verh. int. Ver. Limnol. 24: 866–872.

    Google Scholar 

  • Franken, W. & M. Franken, 1978. Limnologische Untersuchungen am Grossen Bullensee, einem sauren Heidesee Norddeutschlands. II. Zooplankton. Arch. Hydrobiol. 54: 80–100.

    Google Scholar 

  • Fryer, G., 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): A study in comparative functional morphology and ecology. Phil. Trans. r. Soc., London, Series B 254: 221–385.

    Google Scholar 

  • Gannon, J. E., 1972. Effects of eutrophication and fish predation on recent changes in zooplankton Crustacea species composition in Lake Michigan. Trans. Am. micros. Soc. 91: 82–85.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Gons, H. J., T. Burger-Wiersma, J. H. Otten & M. Rijkeboer, 1992. Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands). Hydrobiologia 233: 51–59.

    Google Scholar 

  • Goulden, C. E., 1971. Environmental control of the abundance and distribution of the chydorid Cladocera. Limnol. Oceanogr. 16: 320–331.

    Google Scholar 

  • Hawkins, P. & W. Lampert, 1989. The effect of Daphniabody size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1088.

    Google Scholar 

  • Hillbricht-Ilkowska, A., 1977. Trophic relations and energy flow in pelagic plankton. Pol. Ecol. Stud. 3: 3–98.

    Google Scholar 

  • Holm, N. P., G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates of Daphnia pulexfed Aphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Keen, R., 1973. A probabilistic approach to the dynamics of natural populations of the Chydoridae (Cladocera, Crustacea). Ecology 54: 524–534.

    Google Scholar 

  • Kerfoot, W. C. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods–implications for detritivory and herbivory. Limnol. Oceanogr. 36: 1107–1123.

    Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.

    Google Scholar 

  • Lammens, E.H. R. R., 1988. Trophic interactions in the hypertrophic lake Tjeukemeer: top-down and bottom-up effects in relation to hydrology, predation and bioturbation during the period 1974–1985. Limnologica 19: 81–85.

    Google Scholar 

  • Lammens, E. H. R. R., H. W. de Nie, J. Vijverberg & W. L. T. van Densen, 1985. Resource partitioning and niche shifts of bream (Abramis brama) and eel (Anguilla anguilla) mediated by predation of smelt (Osmerus eperlanus) on Daphnia hyalina. Can. J. Fish. aquat. Sci. 42: 1342–1351.

    Google Scholar 

  • Mann, K. H., 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930.

    Google Scholar 

  • Meijer, M. L., E. H. R. R. Lammens, A. J. P. Raat, M. P. Grimm & S. H. Hosper, 1990. Impacts of cyprinids on zooplankton and algae in the drainable ponds. Hydrobiologia 191: 275–284.

    Google Scholar 

  • Meyer, J. S., C. G. Ingersoll, L. L. McDonald & M. S. Boyce, 1986. Estimating uncertainty in population growth rates: Jackknife vs Bootstrap techniques. Ecology 67: 1156–1166.

    Google Scholar 

  • Mills, E. L. & J. L. Forney, 1988. Trophic dynamics and development of freshwater pelagic food webs. In Carpenter, S. R. (ed.), Complex Interactions in Lake Communities, Springer, Berlin: 11–30.

    Google Scholar 

  • Moed, J. R. & G. M. Hallegraeff, 1978. Some problems in the estimation of chlorophyll-aand phaeopigments from preand postacidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.

    Google Scholar 

  • Moed, J. R. & H. L. Hoogveld, 1982. The algal periodicity in Tjeukemeer during 1968–1978. Hydrobiologia 95: 223–234.

    Google Scholar 

  • Nilsson, N. A. & B. Pejler, 1973. On the relationship between fish fauna and zooplankton composition in North Swedish lakes. Rep. Inst. Freshw. Res. Drottningholm 53: 51–77.

    Google Scholar 

  • Pedros-Alio, C. & T. D. Brock, 1985. Zooplankton dynamics in Lake Mendota: Short-term versuslong-term changes. Freshwat. Biol. 15: 89–94.

    Google Scholar 

  • Pejler B., 1975. On long-term stability of zooplankton composition. Rep. Inst. Freshw. Res. Drottningholm 54: 107–117.

    Google Scholar 

  • Porter, K. G. & R. McDonough, 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  • Rankin, D. P., H. J. Ashton & O. D. Kennedy, 1979. Crustacean zooplankton abundance and species composition in six experimentally fertilized British Columbia lakes. Fish. Mar. Sec. Tech. Rep. 897, 27 pp.

  • Repka, S., 1996. Inter-and intraspecific differences in Daphnia life histories in response to two food sources: the green alga Scenedesmusand the filamentous cyanobacterium Oscillatoria. J. Plankton Res. 18: 1213–1223.

    Google Scholar 

  • Robertson, A. L., 1988. Life history of some species of Chydoridae (Cladocera: Crustacea). Freshwat. Biol. 20: 75–84.

    Google Scholar 

  • Rognerud, S. & G. Kjellberg, 1990. Long-term dynamics of the zoo-plankton community in Lake Mjøsa, the largest lake in Norway. Verh. int. Ver. Limnol. 24: 580–585.

    Google Scholar 

  • Schafner, W. R., N. G. Hairston Jr & R. W. Howarth, 1994. Feeding rates and filament clipping by crustacean zooplankton consuming Cyanobacteria. Verh. int. Ver. Limnol. 25: 2375–2381.

    Google Scholar 

  • Sprules, W. G. & R. Knoechel, 1983. Lake ecosystem dynamics based on functional representations of trophic components, p. 383–403. In Meyers, D. G. & J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems, Westview Press, Boulder, Colorado, 472 pp.

    Google Scholar 

  • Statsoft, 1992. CSS: Statistica. Volume I, Conventions and Statistics I. Statsoft Inc., Tulsa, Oklahoma, 679 pp.

    Google Scholar 

  • Stearns, S. C., 1992. The evolution of life histories. Oxford University Press, Oxford.

    Google Scholar 

  • Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwat. Biol. 10: 317–340.

    Google Scholar 

  • Vijverberg, J., 1989. Culture techniques for studies of growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review. Freshwat. Biol. 21: 317–373.

    Google Scholar 

  • Vijverberg, J., M. Boersma, W. L. T. van Densen, W. Hoogenboezem, E. H. H. R. Lammens & W. M. Mooij, 1990. Seasonal variation in the interactions between piscivorous fish, planktivorous fish and zooplankton in a shallow eutrophic lake. Hydrobiologia 207: 279–286.

    Google Scholar 

  • Vijverberg, J., R. D. Gulati & W. M. Mooij, 1993. Food-web studies in shallow eutrophic lakes by the Netherlands Institute of Ecology: Main results, knowledge gaps and new perspectives. Neth. J. aquat. Ecol. 27: 35–49.

    Google Scholar 

  • Vijverberg, J. & H. P. Koelewijn, 1991. Size dependent mortality and production of Diaphanosoma brachyurum(Lieven) in an eutrophic lake. Verh. int. Ver. Limnol. 24: 2768–2771.

    Google Scholar 

  • Vijverberg, J. & A. F. Richter, 1982. Population dynamics and production of Daphnia hyalinaLeydig and Daphnia cucullataSars in Tjeukemeer. Hydrobiologia 95: 235–259.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterfeeders in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Google Scholar 

  • Whiteside, M. C., 1974. Chydorid (Cladocera) ecology: Seasonal patterns and abundance of populations in Elk Lake, Minnesota. Ecology 55: 538–550.

    Google Scholar 

  • Williams, J. B., 1982. Temporal and spatial patterns of abundance of the Chydoridae (Cladocera) in Lake Itasca, Minnesota. Ecology 63: 345–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijverberg, J., Boersma, M. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360, 233–242 (1997). https://doi.org/10.1023/A:1003148600983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003148600983

Navigation