Skip to main content
Log in

Predation by Acanthocyclops americanus (Copepoda: Cyclopoida) in the hypertrophic shallow waterbody, Lake Albufera (Spain): field and laboratory observations

  • SHALLOW LAKES RESEARCH
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We quantified the predation of Acanthocyclops americanus from the shallow Mediterranean lake Albufera, using gut contents from field collections and laboratory feeding tests. For functional response studies, we used Brachionus plicatilis (at 6 concentrations, 400–4000 ind. 40 ml−1) and Diaphanosoma mongolianum (at 2–20 ind. 40 ml−1). Copepod feeding rates were also estimated using different proportions of rotifer prey and lake seston (0–67.5% of seston + 40 individuals of B. plicatilis). Prey selection studies were conducted using five zooplankton species: Brachionus angularis, Brachionus plicatilis, Keratella tropica, Daphnia magna and Diaphanosoma mongolianum. Gut contents of field-collected adult Acanthocyclops contained filamentous algae and cyanobacteria and 16 zooplankton species (Keratella cochlearis, unspined and spined forms, K. tropica, Brachionus plicatilis, Brachionus calyciflorus, Brachionus angularis, Brachionus variabilis, Asplanchna girodi, Polyarthra vulgaris, Synchaeta pectinata, Lepadella rhomboides, unidentified bdelloids, Alona rectangula, Chydorus sphaericus, Bosmina longirostris, D. magna, Ceriodaphnia dubia and copepod nauplii). When fed B. plicatilis or D. mongolianum, female A. americanus had higher prey consumption rates than males. Increased proportion of lake seston caused reduced consumption of brachionid prey. Our data suggest that A. americanus is omnivorous in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams, P. A., 2000. The evolution of predator-prey interactions: theory and evidence. Annual Review of Ecology and Systematics 31: 79–105.

    Article  Google Scholar 

  • Boersma, M., A. Wesche & H. J. Hirche, 2014. Predation of calanoid copepods on their own and other copepods’ offspring. Marine Biology 161: 733–743.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 181: 475–489.

    Article  Google Scholar 

  • Case, T. J., 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press, London.

    Google Scholar 

  • DeMott, W. R., 1993. Hunger-dependent diet selection in zooplankton. In Hughes, R. N. (ed.), Diet Selection: An Interdisciplinary Approach to Foraging Behaviour. Blackwell Scientific Publications, Oxford: 102–123.

    Google Scholar 

  • de Kluijver, A., J. Yu, M. Houtekamer, J. J. Middelburg & Z. Liu, 2012. Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers. Limnology and Oceanography 57: 1245–1254.

    Article  Google Scholar 

  • Dieng, H., M. Boots, N. Tuno, Y. Tsuda & M. Takagi, 2003. Life history effects of prey choice by copepods: implications for biocontrol of vector mosquitoes. Journal of the American Mosquito Control Association 19: 67–73.

    PubMed  Google Scholar 

  • Dumont, H. J. & S. V. Negrea, 2002. Introduction to the class Branchiopoda. In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 19. Backhuys Publishers, Leiden.

    Google Scholar 

  • Enríquez-García, C., S. Nandini & S. S. S. Sarma, 2013. Feeding behavior of Acanthocyclops americanus (Marsh) (Copepoda: Cyclopoida). Journal of Natural History 47: 853–862.

    Article  Google Scholar 

  • Frisch, D., H. Rodríguez-Pérez & A. J. Green, 2006. Invasion of artificial ponds in Doñana Natural Park, southwest Spain, by an exotic estuarine copepod. Aquatic Conservation: Marine and Freshwater Ecosystems 16(5): 483–492.

    Article  Google Scholar 

  • García, C. E., S. Nandini & S. S. S. Sarma, 2011. Demographic characteristics of the copepod Acanthocyclops americanus (Sars, 1863) (Copepoda: Cyclopoida) fed mixed algal (Scenedesmus acutus)-rotifer (Brachionus havanaensis) diet. Hydrobiologia 666: 59–69.

    Article  Google Scholar 

  • Garcia-Chicote, J., C. Rojo & M. A. Rodrigo, 2007. Acanthocyclops robustus feeding: a case of cannibalism. Limnetica 26: 265–275.

    Google Scholar 

  • Gliwicz, Z. M., 2003. Between Hazards of Starvation and Risk of Predation: The Ecology of Offshore Animals, Vol. 12. International Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnology and Oceanography 39: 419–424.

    Article  Google Scholar 

  • Gophen, M., 1977. Food and feeding habits of Mesocyclops leuckarti (Claus) in Lake Kinneret (Israel). Freshwater Biology 7: 513–518.

    Article  Google Scholar 

  • Heuschele, J. & E. Selander, 2014. The chemical ecology of copepods. Journal of Plankton Research 36: 895–913.

    Article  Google Scholar 

  • Hirst A. G. & T. Kiørboe, 2014. Macroevolutionary patterns of sexual size dimorphism in copepods. Proceedings of the Royal Society B. Biological Sciences 281: 20140739.

  • Hołyńska, M., J. W. Reid & H. Ueda, 2003. Genus Mesocyclops Sars, 1914, pp. 12–213. In: H. Ueda & J. W. Reid (eds), Copepoda: Cyclopoida. Genera Mesocyclops and Thermocyclops. Vol. 20. In H.J. Dumont (ed). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys, Leiden.

  • Hopp, U. & G. Maier, 2005. Implication of the feeding limb morphology for herbivorous feeding in some freshwater cyclopoids. Freshwater Biology 50: 742–747.

    Article  Google Scholar 

  • Kiørboe, T., 2011a. How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews of the Cambridge Philosophical Society 86: 311–339.

    Article  Google Scholar 

  • Kiørboe, T., 2011b. What makes pelagic copepods so successful? Journal of Plankton Research 33: 677–685.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria. Gebruder Borntraeger, Berlin. 2 vols.

  • Krebs, J. R., 1999. Ecological Methodology, 2nd ed. Addison-Wesley Educational Publishers, Boston.

    Google Scholar 

  • Jackson, J. M. & P. H. Lenz, 2016. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods. Scientific Reports 6: 33585.

    Article  CAS  Google Scholar 

  • Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47(9): 1685–1695.

    Article  Google Scholar 

  • LeBlanc, J. S., W. D. Taylor & O. E. Johannsson, 1997. The feeding ecology of the cyclopoid copepod Diacyclops thomasi in Lake Ontario. Journal of Great Lakes Research 23: 369–381.

    Article  Google Scholar 

  • Link, J. & R. Keen, 1995. Prey of deep-water Hydra in Lake Superior. Journal of Great Lakes Research 21: 319–323.

    Article  Google Scholar 

  • Miracle, M. R., V. Alekseev, V. Monchenko, V. Sentandreu & E. Vicente, 2013. Molecular-genetic-based contribution to the taxonomy of the Acanthocyclops robustus group. Journal of Natural History 47: 863–888.

    Article  Google Scholar 

  • Miracle, M. R., E. Vicente, S. S. S. Sarma & S. Nandini, 2014. Planktonic rotifer feeding in hypertrophic conditions. International Review of Hydrobiology 99: 141–150.

    Article  Google Scholar 

  • Monakov, A. B., 2003. Feeding of freshwater Invertebrates. Kenobi Productions, Ghent.

    Google Scholar 

  • Oltra, R. & M. R. Miracle, 1984. Comunidades zooplanctónicas de la Albufera de Valencia. Limnetica 1: 51–61.

    Google Scholar 

  • Oltra, R. & M. R. Miracle, 1992. Seasonal succession zooplankton populations in the hypertrophic lagoon: Albufera of Valencia (Spain). Archiv für Hydrobiologie 124: 187–204.

    Google Scholar 

  • Oltra, R., M. T. Alfonso, M. Sahuquillo & M. R. Miracle, 2001. Increase of rotifer diversity after sewage diversion in the hypertrophic lagoon, Albufera of Valencia, Spain. Hydrobiologia 446(447): 213–220.

    Article  Google Scholar 

  • Onandia, G., M. R. Miracle & E. Vicente, 2014. Primary production under hypertrophic conditions and its relationship with bacterial production. Aquatic Ecology 48: 447–473.

    Article  CAS  Google Scholar 

  • Reid, N. W. & C. E. Williamson, 2009. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Academic Press, New York: 829–899.

    Google Scholar 

  • Roche, K., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.

    Article  Google Scholar 

  • Roche, K., 1990. Some aspects of vulnerability to cyclopoid predation of zooplankton prey individuals. Hydrobiologia 198: 153–162.

    Article  Google Scholar 

  • Rollwagen-Bollens, G., S. M. Bollens, A. Gonzalez, J. Zimmerman, T. Lee & J. Emerson, 2013. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 705: 101–118.

    Article  CAS  Google Scholar 

  • Romo, S. & M. R. Miracle, 1993. Long term periodicity of Planktothrix agardhii, Pseudanabaena galeata and Gleiterinema sp. in a shallow hypertrophic lagoon, the Albufera of Valencia, Spain. Archiv für Hydrobiologie 126: 469–486.

    Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation: a case study on two species of Asplanchna and three brachionid prey (Rotifera). Hydrobiologia 593: 67–76.

    Article  Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2017. Rotíferos Mexicanos (Rotifera). Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, México, Estado de México.

    Google Scholar 

  • Sarma, S. S. S., J. Jiménez-Contreras, R. Fernández, S. Nandini & G. García-García, 2013. Functional responses and feeding rates of Mesocyclops pehpeiensis Hu (Copepoda) fed different diets (rotifers, cladocerans, alga and cyanobacteria). Journal of Natural History 47: 841–852.

    Article  Google Scholar 

  • Seckbach, J. (ed.), 2007. Algae and Cyanobacteria in Extreme Environments. Springer, New York.

    Google Scholar 

  • Trexler, C. J., C. E. McCulloch & J. Travis, 1988. How can the functional response best be determined? Oecologia 76: 206–214.

    Article  Google Scholar 

  • WHO, 1999. World Health Organization: Toxic cyanobacteria in water. In Chorus, I. & J. Bartram (eds), A guide to their public health consequences, monitoring and management. St Edmundsbury Press, Suffolk.

    Google Scholar 

  • Williamson, C. E., 1983. Invertebrate predation on planktonic rotifer. Hydrobiologia 104: 385–396.

    Article  Google Scholar 

Download references

Acknowledgements

SN and SSSS thank CONACyT (Mexico), the UNAM (DGAPA), and the University of Valencia for support during the stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. S. Sarma.

Additional information

Maria Rosa Miracle—Deceased.

Guest editors: S. Nandini, S.S.S. Sarma, Erik Jeppesen & Linda May / Shallow Lakes Research: Advances and Perspectives

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, S.S.S., Miracle, M.R., Nandini, S. et al. Predation by Acanthocyclops americanus (Copepoda: Cyclopoida) in the hypertrophic shallow waterbody, Lake Albufera (Spain): field and laboratory observations. Hydrobiologia 829, 5–17 (2019). https://doi.org/10.1007/s10750-018-3546-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3546-7

Keywords

Navigation