Skip to main content
Log in

Mangrove zooplankton of North Queensland, Australia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Egg production rates by the dominant copepod species in five rivers inNortheastern Australia were measured. An undescribed Oithona speciesproduced 2.3–15.3 eggs female−1 d−1,Oithona aruensis 0.8–11.3 eggs female−1 d−1, Parvocalanus crassirostris 1.3–36.2 eggsfemale−1 d−1, and Bestiolina similis3.6–51.4 eggs female−1 d−1. Oithona spp.appear to feed carnivorously, whereas the calanoid species B. similis andP. crassirostris were suspension feeders. Acartia sinjiensis fedopportunistically as a carnivore or as a suspension feeder. Grazing ratesdirectly measured in feeding experiments or calculated from egg productionrates were low (usually less than 31% of copepod body C per day),despite mangrove waters having apparently high food concentrations. Wesuggest that in spite of high standing stocks of potential foods, copepodswere in fact food-limited much of the time, and that the deficit betweenmetabolic costs and measured ingestion were met by intake of detritus by B.similis, P. crassirostris and Pseudodiaptomus griggae, and carnivory onlarger prey items by A. sinjiensis and Oithona spp. Turbulence andcannibalism may play important roles in the nutrition of mangrove copepods.Both phytoplankton-based and detritus-based food chains appear important inmangrove pelagic secondary production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler, J. W., J. Alcala-Herrera & R. Burke, 1994. Trophic roles of particle feeders and detritus in a mangrove island prop root ecosystem. Hydrobiologia 292/293: 437–446.

    Article  Google Scholar 

  • Atkinson, A., 1995. Omnivory and feeding selectivity in five copepod species during spring in Bellingshausen Sea, Antarctica. ICES J. mar. Sci. 52: 385–396.

    Article  Google Scholar 

  • Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser. 130: 85–96.

    Google Scholar 

  • Boto, K. G. & J. S. Bunt, 1981. Dissolved oxygen and pH relationships in northern Australian man-grove waterways. Limnol. Oceanogr. 26: 1176–1178.

    CAS  Google Scholar 

  • Checkley, D. M., 1980. Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998.

    Google Scholar 

  • Daan, R., S. R. Gonzalez & W. C. M. Klein Breteler, 1988. Cannibalism in omnivorous calanoid copepods. Mar. Ecol. Prog. Ser. 47: 45–54.

    Google Scholar 

  • Drits, A. V. & T. N. Semenova, 1984. Experimental investigations of the feeding of Oithona similisClaus. Oceanology 24: 755–759.

    Google Scholar 

  • Edmondson, W. T., G. W. Comita & G. C. Anderson, 1962. Reproductive rate of copepods in nature and its relation to phytoplankton population. Ecology 43: 625–634.

    Article  Google Scholar 

  • Ferrari, F. D. & J. W. Ambler, 1992. Nauplii and copepodids of the cyclopoid copepod Diothona oculata(Farran, 1913) (Oithonidae) from a mangrove cay in Belize. Proc. biol. Soc.Wash. 105: 275–298.

    Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805–815.

    Article  Google Scholar 

  • Fulton, R. S. III, 1984. Predation, production and the organization of an estuarine copepod community. J. Plankton Res. 6: 399–415.

    Google Scholar 

  • Gabriel, W., 1985. Overcoming food limitation by cannibalism: A model study on cyclopoids. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 373–381.

    Google Scholar 

  • Gerber, R. P. & M. B. Gerber, 1979. Ingestion of natural particulate matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton. Mar. Biol. 52: 33–43.

    Article  Google Scholar 

  • Gifford, D. J., 1993. Consumption of protozoa by copepods feeding on natural microplankton assemblages. In Kemp P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Current Methods in Aquatic Microbial Ecology, Lewis Publishers: 723–729.

  • Gonzalez, H. E. & V. Smetacek, 1994. The possible role of the cyclopoid copepod Oithonain retarding vertical flux of zooplankton fecal material. Mar. Ecol. Prog. Ser. 113: 233–246.

    Google Scholar 

  • Heinle, D. R., R. P. Harris, J. F. Ustach & D. A. Flemer, 1977. Detritus as food for estuarine copepods. Mar. Biol. 40: 341–353.

    Article  Google Scholar 

  • Hiromi, J., T. Nagata & S. Kadota, 1988. Respiration of the small planktonic copepod Oithona davisaeat different temperatures. Bull. Plankton Soc. Japan. 35: 143–148.

    Google Scholar 

  • Huntley, M. & M. D. G. Lopez, 1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140: 201–242.

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer, W. J. & A. D McKinnon, 1989. Zooplankton in a marine bay. III. Evidence for influence of vertebrate predation on distributions of two common copepods. Mar. Ecol. Prog. Ser. 53: 21–35.

    Google Scholar 

  • Kiørboe, T. & M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16: 1353–1366.

    Google Scholar 

  • Kiørboe, T. & E. Saiz, 1995. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser. 122: 135–145.

    Google Scholar 

  • Kiørboe, T., F. Mohlenberg & K. Hamburger, 1985a. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26: 85–97.

    Google Scholar 

  • Kiørboe, T., F. Mohlenberg & H. U. Riisgard, 1985b. In situfeeding rates of planktonic copepods: a comparison of four methods. J. exp. mar. Biol. Ecol. 88: 67–81.

    Article  Google Scholar 

  • Kleppel, G. S., 1993. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99: 183–195.

    Google Scholar 

  • Koehl, M. A. R. & J. R. Strickler, 1981. Copepod feeding currents: food capture at low Reynolds number. Limnol. Oceanogr. 26: 1062–1073.

    Google Scholar 

  • Lampitt, R. S., 1978. Carnivorous feeding by a small marine copepod. Limnol. Oceanogr. 23: 1228–1231.

    Google Scholar 

  • Lampitt, R. S. & J. C. Gamble, 1982. Diet and respiration of the small planktonic marine copepod Oithona nana. Mar. Biol. 66: 185–190.

    Article  Google Scholar 

  • Lonsdale, D. J., 1981. Regulatory role of physical factors and predation for two Chesapeake Bay copepod species. Mar. Ecol. Prog. Ser. 5: 341–351.

    Google Scholar 

  • Lonsdale, D. J., D. R. Heinle & C. Siegfried, 1979. Carnivorous feeding behavior of the adult calanoid copepod Acartia tonsa Dana. J. exp. mar. Biol. Ecol. 36: 235–238.

    Article  Google Scholar 

  • Marin, V., M. E. Huntley & B. Frost. 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Mar. Biol. 93: 49–58.

    Article  Google Scholar 

  • McKinnon, A. D. & T. Ayukai, 1996. Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar. Freshwat. Res. 47: 595–603.

    Article  CAS  Google Scholar 

  • McKinnon, A. D. & D. W. Klumpp, D.W., 1998. Mangrove zooplankton of North Queensland, Australia. I. Plankton community structure and environment. Hydrobiologia 362: 127–143.

    Article  Google Scholar 

  • Mullin, M. M., 1979. Differential predation by the carnivorous marine copepod, Tortanus discaudatus. Limnol. Oceanogr. 24: 774–777.

    Google Scholar 

  • Nakamura, Y. & J. T. Turner. 1997. Predation and respiration by the small cyclopoid copepod Oithona similis: How important is feeding on ciliates and heterotrophic flagellates? J. Plankton Res. 19: 1275–1288.

    Google Scholar 

  • Nielsen, T. G. & M. Sabatini., 1996. Role of cyclopoid copepods Oithonaspp. in North Sea plankton communities. Mar. Ecol. Prog. Ser. 139: 79–93.

    Google Scholar 

  • Paffenhöfer, G.-A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J. Plankton Res. 15: 37–55.

    Google Scholar 

  • Paffenhöfer, G.-A., J. R. Strickler & M. Alcaraz, 1982. Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Mar. Biol. 67: 193–99.

    Article  Google Scholar 

  • Pagano, M. & L. Saint-Jean, 1994. In situmetabolic budget for the calanoid copepod Acartia clausiin a tropical brackish water lagoon (Ebrie Lagoon, Ivory Coast). Hydrobiologia 272: 147–161.

    Article  Google Scholar 

  • Peterson, W. T. & W. J. Kimmerer, 1994. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: Egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39: 1594–1605.

    Article  Google Scholar 

  • Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.

    Google Scholar 

  • Robertson, A. I. & S. J. M. Blaber, 1992. Plankton, epibenthos and fish communities. In A. I. Robertson & D. M. Alongi (eds), Tropical Mangrove Ecosystems. American Geophysical Union, Washington: 173–224.

    Google Scholar 

  • Robertson, A. I., D. M. Alongi & K. G. Boto, 1992. Food chains and carbon fluxes. In A. I. Robertson & D. M. Alongi (eds), Tropical Mangrove Ecosystems. American Geophysical Union, Washington: 193–326.

    Google Scholar 

  • Roff, J. C., J. T. Turner, M. K. Webber & R. R. Hopcroft, 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquat. Microb. Ecol. 9: 165–175.

    Google Scholar 

  • Roman, M. R., 1984. Utilization of detritus by the marine copepod Acartia tonsa. Limnol. Oceanogr. 29: 949–959.

    Google Scholar 

  • Sabatini, M. & T. Kiørboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 16: 1329–1352.

    Google Scholar 

  • Saiz, E. & T. Kiørboe, 1995. Predatory and suspension feeding of the copepod Acartia tonsain turbulent environments. Mar. Ecol. Prog. Ser. 122: 147–158.

    Google Scholar 

  • SAS Institute Inc., 1989. SAS/STAT User’s Guide, Version 6, 4th edn., Volume 2. SAS Institute Inc., Cary, N.C. 846 pp.

    Google Scholar 

  • Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.

    CAS  Google Scholar 

  • Strickland, J. D. H., 1965. Production of organic matter in the primary stages of the marine food chain. In: J. P. Riley & G. Skirrow (eds), Chemical Oceanography Vol. 1. Academic Press, New York: 477–610.

    Google Scholar 

  • Turner, J. T., 1984. Zooplankton feeding ecology: contents of fecal pellets o the copepods Eucalanus pileatusand Paracalanus quasimodo from continental shelf waters of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 15: 27–46.

    Google Scholar 

  • Turner, J. T., 1986. Zooplankton feeding ecology: contents of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera, and O. simplexfrom the northern Gulf of Mexico. Mar. Ecol. 7: 289–302.

    Google Scholar 

  • Turner, J. T. & E. Granéli, 1992. Zooplankton feeding ecology: grazing during enclosure studies of phytoplankton blooms from the west coast of Sweden. J. exp. mar. Biol. Ecol. 157: 19–31.

    Article  Google Scholar 

  • Turner, J. T. & J. C. Roff, 1993. Trophic levels and trophospecies in marine plankton: lessons from the microbial food web. Marine Microbial Food Webs 7: 225–248.

    Google Scholar 

  • Uchima, M. & R. Hirano, 1986a. Food of Oithona davisae(Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bull. Plankton Soc. Japan 33: 21–28.

    Google Scholar 

  • Uchima, M. & R. Hirano, 1986b. Predation and cannibalism in neritic copepods. Bull. Plankton Soc. Japan 33: 147–149.

    Google Scholar 

  • Uchima, M., 1979. Morphological observation of developmental stages in Oithona brevicornis(Copepoda, Cyclopoida). Bull. Plankton Soc. Japan 26: 59–76.

    Google Scholar 

  • Uye, S., 1994. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293: 513–519.

    Article  Google Scholar 

  • Uye, S., 1991. Temperature-dependent development and growth of the planktonic copepod Paracalanussp. in the laboratory. Bull. Plankton Soc. Japan, Spec. Vol. 627–636.

  • Uye, S. & K. Sano, 1995. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisaein a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118: 121–128.

    Google Scholar 

  • Verity, P. G. & C. Langdon, 1984. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859–868.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, A.D., Klumpp, D.W. Mangrove zooplankton of North Queensland, Australia. Hydrobiologia 362, 145–160 (1997). https://doi.org/10.1023/A:1003138718716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003138718716

Navigation