Skip to main content
Log in

Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Four approaches were used to assess the effect ofinundation on methane emissions from floodplainwetlands in Victoria, Australia: (i) fieldobservations following natural rainfall events; (ii)experimental manipulation of water levels in smallfloodplain depressions; (iii) experimentalmanipulation of water levels in replicated mesocosms;and (iv) in vitro incubation of floodplainsediment under laboratory conditions. Raftery'sSwamp, a large (150 ha) wetland on the floodplain ofthe Goulburn River, became inundated in June 1993following autumn-winter rainfall. Methane emissionspeaked (1.7 ± 0.05 mmol m-2 h-1) somesix months later, and the methane content of sedimentgas bubbles reached 59% v/v, even though the positivesediment redox potentials (176 to 243 mV) indicatedthat sediments were only moderately reducing. Threesmall (< 1 ha) depressions on the floodplains of theRiver Murray and Kiewa River were inundated eithernaturally (by rain and/or overflow from nearby rivers)or artificially by flooding at specific times of year;emissions from these sites were usually negligibleafter flooding in autumn or winter. In contrast, theonset of methane emission was very rapid (within 3 to6 days) after the depressions had been flooded insummer, and the methane content of sediment gasbubbles could then reach 36% v/v. At their peak,emissions from the ephemeral wetlands were similar topeak emissions from permanent wetlands insouth-eastern Australia. Emissions from replicatedwetland mesocosms (4.5 m diameter, 0.9 m deep) werealways very small (<0.2 mmol m-2 h-1),regardless of time of flooding, water depths, orseason. In vitro incubation of wetland sedimentunder anaerobic conditions indicated a progressivedecrease in benthic methanogenesis with sedimentdesiccation and exposure to air. Ephemerallyinundated floodplain wetlands may be sites ofsignificant methane emission, especially over thesummer months. Moreover, the survival and rapidreactivation of methanogenic archaea after prolongeddrying of wetland sediments suggests thatmethanogenesis is possible even from re-wettedfloodplain environments that had earlier experiencedan extended dry phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachoon, D. & R. D. Jones, 1992. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades. Soil Biol. Biochem. 24: 21-27.

    Google Scholar 

  • Bartlett, K. B., P. M. Crill, J. A. Bonassi, J. E. Richey & R. C. Harriss, 1990. Methane flux from the Amazon River floodplain: emissions during rising water. J. Geophys. Res. 95: 16,773-16,788.

    Google Scholar 

  • Bianchi, T. S., M. E. Freer & R. G. Wetzel, 1996. Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from the Sabine River floodplain (southeast Texas, U.S.A.). Arch Hydrobiol. 136: 261-287.

    Google Scholar 

  • Bohn, H. L., 1971. Redox potential. Soil Sci. 112: 39-45.

    Google Scholar 

  • Boon, P. I., 1991. Bacterial assemblages in rivers and billabongs of southeastern Australia. Microbiol. Ecol. 22: 27-52.

    Google Scholar 

  • Boon, P. I. & A. Mitchell, 1995. Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiol. Ecol. 18: 175-190.

    Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1991. Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwat. Biol. 26: 209- 226.

    Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1995. Methane fluxes from an Australian floodplain wetland: the importance of emergent macrophytes. J. Nth am. Benthol. Soc. 14: 582-598.

    Google Scholar 

  • Boon, P. I., P. Virtue & P. D. Nichols, 1996. Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwat. Res. 47: 27-41.

    Google Scholar 

  • Bubier, J. L. & T. R. Moore, 1994. An ecological perspective on methane emissions from northern wetlands. Trends Ecol. Evol. 9: 460-464.

    Google Scholar 

  • Bunn, S. E. & P. I. Boon, 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96: 85-94.

    Google Scholar 

  • Capone, D. G. & R. P. Kiene, 1988. Comparison ofmicrobial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon metabolism. Limnol. Oceanogr. 33: 725-749.

    Google Scholar 

  • Cappenberg, Th. E., 1974. Interrelationships between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-waterlake. I. Field observations. Anton. van Leeuwenhoek 40: 285-295.

    Google Scholar 

  • Chin, K.-J. & R. Conrad, 1995. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18: 85-102.

    Google Scholar 

  • Conrad, R.H., 1995. Soil microbial processes involved in production and consumption of atmospheric trace gases. Adv. Microbiol. Ecol. 14: 207-250.

    Google Scholar 

  • Conrad, R., H. Schutz & M. Babbel, 1987. Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45: 281-289.

    Google Scholar 

  • Crozier, C. R., I. Devai & R. D. DeLaune, 1995. Methane and reduced sulfur gas production by fresh and dried wetland soils. Soil Sci. Soc. am. J. 59: 277-284.

    Google Scholar 

  • Fechner-Levy, E. & H. F. Hemond, 1996. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnol. Oceanogr. 41: 1375-1383.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and Mineral Cycling. Academic Press, London: 225 pp.

    Google Scholar 

  • Fetzer, S., F. Bak & R. Conrad, 1993. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 12: 107-115.

    Google Scholar 

  • Finlayson, M. & M. Moser, 1991. Wetlands. International Waterfowl and Wetlands Research Bureau, Slimbridge, 224 pp.

    Google Scholar 

  • Freeman, C., M. A. Lock & B. Reynolds, 1993. Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: potential feedback to climatic change. Biogeochemistry 19: 51-60.

    Google Scholar 

  • Graetz, D. A., D. R. Keeney & R. B. Aspiras, 1973. Eh status of lake sediment-water systems in relation to nitrogen transformations. Limnol. Oceanogr. 18: 908-917.

    Google Scholar 

  • Harriss, R. C., D. I. Sebacher, K. B. Bartlett, D. S. Bartlett & P. M. Crill, 1988. Sources of atmospheric methane in the south Florida environment. Global Biogeochem. Cycles 2: 231-243.

    Google Scholar 

  • Heiler, G., T. Hein, F. Schiemer & G. Bornette, 1995. Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system. Regulated Rivers: Res. Mgmt. 11: 351-361.

    Google Scholar 

  • Jones, J. G., 1979a. Microbial activity in lake sediments with particular reference to electrode potential gradients. J. Gen. Microbiol. 115: 19-26.

    Google Scholar 

  • Jones, J. G., 1979b. Microbial nitrate reduction in freshwater sediments. J. Gen. Microbiol. 115: 27-35.

    Google Scholar 

  • Jones, J. G., 1982. Activities of aerobic and anaerobic bacteria in lake sediments and their effects on the water column. In Nedwell, D. B. & C. M. Brown (eds), Sediment Microbiology. Academic Press, London: 107-145.

    Google Scholar 

  • Jørgensen, B. B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7-17.

    Google Scholar 

  • Kludze, H. K. & R. D. DeLaune, 1994. Methane emissions and growth of Spartina patensin response to soil redox intensity. Soil Sci. Soc. Am. J. 58: 1838-1845.

    Google Scholar 

  • Lindau, C. W., W. H. Patrick Jr. & R. D. DeLaune, 1993. Factors affecting methane production in flooded rice soils. In Karl, D. M. (ed.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. American Society for Agronomy, Madison: 157-165.

    Google Scholar 

  • Lovley, D. R. & M. J. Klug, 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. envir. Microbiol. 45: 187-192.

    Google Scholar 

  • Mayer, H. P. & R. Conrad, 1990. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol. Ecol. 73: 103-112.

    Google Scholar 

  • Moore, T. R. & R. Knowles, 1989. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69: 33-38.

    Google Scholar 

  • Muller, K. L., G. G. Ganf & P. I. Boon, 1994. Methane flux from beds of Baumea arthrophylla(Nees) Boeckeler and Triglochin procerumR.Br. at Bool Lagoon, South Australia. Aust. J. Mar. Freshwat. Res. 45: 1543-1553.

    Google Scholar 

  • Nielsen, D. L. & A. J. Chick, 1997. Flood-mediated changes in aquatic macrophyte community structure. Mar. Freshwat. Res. 48: 153-157.

    Google Scholar 

  • Patrick, W. H. Jr. & A. Jugsujinda, 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci. Soc. Am. J. 56: 1071-1073.

    Google Scholar 

  • Peters, V. & R. Conrad, 1995. Methanogenic and other strictly anaerobic bacteria in desert soils and other oxic soils. Appl. envir. Microbiol. 61: 1673-1676.

    Google Scholar 

  • Pulliam, W. M., 1993. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol. Monogr. 63: 29-53.

    Google Scholar 

  • Reddy, K. R. & D. A. Graetz, 1988. Carbon and nitrogen dynamics in wetland soils. In Hook, D.D. et al. (eds), The Ecology and Management of Wetlands. Volume 1. Ecology of Wetlands. Croom Helm, London: 307-318.

    Google Scholar 

  • Roden, E. E. & R. G. Wetzel, 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41: 1733-1748.

    Google Scholar 

  • Roslev, P. & G. M. King, 1996. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiol. Ecol. 19: 105-115.

    Google Scholar 

  • Ross, J. L., P. I. Boon, P. Ford & B. T. Hart, 1997. Detection and quantification with 16S rRNA oligonucleotide probes of plank tonic methylotrophic bacteria in a floodplain lake. Microb. Ecol. 34: 97-108.

    Google Scholar 

  • Ryder, D. S. & P. Horwitz, 1995. Seasonal water regimes and leaf litter processing in a wetland on the Swan Coastal Plain, Western Australia. Mar. Freshwat. Res. 46: 1077-1084.

    Google Scholar 

  • Schutz, H., W. Seiler. & R. Conrad, 1990. Influence of soil temperature on methane emissions from rice paddy fields. Biogeochemistry 11: 77-95.

    Google Scholar 

  • Shannon, R. D. & J. R. White, 1994. A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27: 35-60.

    Google Scholar 

  • Sorrell, B. K. & P. I. Boon, 1992. Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshwat. Biol. 27: 435-445.

    Google Scholar 

  • Sorrell, B. K. & P. I. Boon, 1994. Convective gas flow in Eleocharis sphacelataR. Br.: methane transport and release from wetlands. Aquat. Bot. 47: 197-212.

    Google Scholar 

  • Taylor, J. K., 1960. Soils. In Leper, G. W. (ed.), The Australian Environment. CSIRO and Melbourne University Press, Melbourne: 29-44.

    Google Scholar 

  • Walker, K. F., 1985. A review of the ecological effects of river regulation in Australia. Hydrobiologia 125: 111-129.

    Google Scholar 

  • Walker, K. F. & M. C. Thoms, 1993. Environmental effects of flow regulation on the Lower River Murray, South Australia. Regulated Rivers: Res. Mgmt. 8: 103-119.

    Google Scholar 

  • Wang, Z., R. D. DeLaune, C. W. Lindau & W. H. Patrick, Jr., 1992. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertil. Res. 33: 115-121.

    Google Scholar 

  • Wang, Z., C. W. Lindau, R. D. DeLaune & W. H. Patrick, Jr., 1993a. Methane emission and entrapment in flooded rice soils as affected by soil properties. Biol. Fertil. Soils 16: 163-168.

    Google Scholar 

  • Wang, Z., R. D. DeLaune, P. H. Masscheleyn & W. H. Patrick, Jr., 1993b. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57: 382-385.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Res. Mgmt. 11: 105-119.

    Google Scholar 

  • Wuebbles, D. J. & J. Edmonds, 1991. Primer on Greenhouse Gases. Lewis, Chelsea, 230 pp.

    Google Scholar 

  • Yagi, K. & K. Minami, 1993. Spatial and temporal variations of methane flux from a rice paddy field. In Oremland, R.S. (ed.), Biogeochemistry of Global Change. Chapman and Hall, New York: 353-368.

    Google Scholar 

  • Zeikus, J. G. & M. R. Winfrey, 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. envir. Microbiol. 31: 99-107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boon, P.I., Mitchell, A. & Lee, K. Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357, 73–87 (1997). https://doi.org/10.1023/A:1003126601466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003126601466

Navigation