Skip to main content
Log in

Do oxic–anoxic transitions constrain organic matter mineralization in eutrophic freshwater wetlands?

  • WETLANDS BIODIVERSITY AND PROCESSES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aims at investigating decomposition processes in wetlands that are daily or seasonally exposed to intermittent oxic and anoxic conditions. We hypothesized that in wetland ecosystems where anoxia regularly establishes, decomposition rates are not affected by oxygen shortage, especially when nitrates are available. Monitoring and experiments were performed from December 2003 to January 2005 in one of the widest (81 ha) freshwater wetlands in the Po river floodplain (Natural Reserve Paludi del Busatello, Italy). Intact sediment cores were sampled on a seasonal basis. Sediment–water fluxes of oxygen, dissolved inorganic carbon, methane, and inorganic nitrogen were determined under oxic and anoxic conditions. Oxic–anoxic transitions always resulted in enhanced ammonium, dissolved inorganic carbon, and methane effluxes. At high temperatures, the methane release from sediments was inversely related to both nitrate concentrations and uptake. Likely, nitrate can compensate for the oxygen deficiency while maintaining an oxidative metabolism, either supporting microbial decomposition as an electron acceptor or stimulating the oxidation of the byproducts of the anaerobic metabolism, e.g., methane. This is a key point as the number of temperate wetlands with concurrent nitrate pollution and oxygen shortage is increasing throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, L. G., P. O. J. Hall, A. Iverfeldt, M. M. R. Van Der Loeff, B. Sundby & S. F. G. Westerlund, 1986. Benthic respiration measured by total carbonate production. Limnology and Oceanography 31: 319–329.

    Article  CAS  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewaters, 20th ed. APHA, Washington, DC.

    Google Scholar 

  • Barica, J. & J. A. Mathias, 1979. Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. Journal of the Fisheries Research Board of Canada 36: 980–986.

    Article  Google Scholar 

  • Bartoli, M., E. Racchetti, C. A. Delconte, E. Sacchi, E. Soana, A. Laini, D. Longhi & P. Viaroli, 2012. Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 9: 361–373.

    Article  CAS  Google Scholar 

  • Bastviken, D., L. Persson, G. Odham & L. Tranvik, 2004. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography 49: 109–116.

    Article  CAS  Google Scholar 

  • Bolpagni, R., E. Pierobon, D. Longhi, D. Nizzoli, M. Bartoli, M. Tomaselli & P. Viaroli, 2007. Diurnal exchanges of CO2 and CH4 across the water–atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquatic Botany 87: 43–48.

    Article  CAS  Google Scholar 

  • Capone, D. G. & R. P. Kiene, 1988. Comparison of microbial dynamics in freshwater and marine environments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography 33: 725–749.

    Article  CAS  Google Scholar 

  • Carignan, R. & D. R. S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnology and Oceanography 36: 683–707.

    Article  CAS  Google Scholar 

  • Dalsgaard, T., L. P. Nielsen, V. Brotas, P. Viaroli, G. J. C. Underwood, D. B. Nedwell, K. Sundback, S. Rysgaard, A. Miles, M. Bartoli, L. Dong, D. C. O. Thornton, L. D. M. Ottosen, G. Castaldelli & N. Risgaard-Petersen, 2000. Protocol handbook for NICE-Nitrogen Cycling in Estuaries: a project under the EU research programme. Marine Science and Technology (MAST III).

  • Diaz, R. J. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  PubMed  Google Scholar 

  • Fenner, N. & C. Freeman, 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4: 895–900.

    Article  CAS  Google Scholar 

  • Ford, P. W., P. I. Boon & K. Lee, 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485: 97–110.

    Article  CAS  Google Scholar 

  • Grybos, M., M. Davranche, G. Gruau, P. Petitjean & M. Pédrot, 2009. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154: 13–19.

    Article  CAS  Google Scholar 

  • Guntiñas, M. E., F. Gil-Sotres, M. C. Leirós & C. Trasar-Cepeda, 2009. CO2 emission from soils under different uses and flooding conditions. Soil Biology and Biochemistry 41: 2598–2601.

    Article  Google Scholar 

  • Hanke, A., C. Cerli, J. Muhr, W. Borken & K. Kalbitz, 2013. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. European Journal of Soil Science 64: 476–487.

    Article  CAS  Google Scholar 

  • Hulthe, G., S. Hulth & P. O. J. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta 62: 1319–1328.

    Article  CAS  Google Scholar 

  • Kane, E. S., M. R. Chivers, M. R. Turetsky, C. C. Treat, D. G. Petersen, M. Waldrop, J. W. Harden & A. D. McGuire, 2013. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biology and Biochemistry 58: 50–60.

    Article  CAS  Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Koroleff, F., 1970. Direct determination of ammonia in natural waters as indophenol blue. Information on Techniques and Methods for Seawater Analysis. ICES Journal of Marine Science 114: 799–801.

  • Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Article  CAS  Google Scholar 

  • Kristensen, E. & T. H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. Journal of Marine Research 45: 231–257.

    Article  CAS  Google Scholar 

  • Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnology and Oceanography 40: 1430–1437.

    Article  CAS  Google Scholar 

  • Lenth R., 2015. lsmeans: least-squares means. R package version 2.20-23.

  • Liikanen, A., T. Murtoniemi, H. Tanskanen, T. Vaisanen & P. J. Martinkainen, 2002. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59: 269–286.

    Article  CAS  Google Scholar 

  • Liu, R., A. Hofmann, F. O. Gülaçar, P.-Y. Favarger & J. Dominik, 1996. Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chemical Geology 133: 201–209.

    Article  CAS  Google Scholar 

  • Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

    Article  CAS  Google Scholar 

  • Longhi, D., M. Bartoli, D. Nizzoli & P. Viaroli, 2013. Benthic processes in fresh water fluffy sediments undergoing resuspension. Journal of Limnology 72: 1–12.

    Article  Google Scholar 

  • Lovley, D. R. & M. J. Klug, 1982. Intermediary Metabolism of Organic Matter in the Sediments of a Eutrophic Lake. Applied and Environmental Microbiology 43: 552–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maerki, M., B. Mueller, C. Dinkel & B. Wehrli, 2009. Mineralization pathways in lake sediments with different oxygen and organic carbon supply. Limnology and Oceanography 54: 428–438.

    Article  CAS  Google Scholar 

  • Middelburg, J. J. & L. A. Levin, 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6: 1273–1293.

    Article  CAS  Google Scholar 

  • Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. Fems Microbiology Ecology 86: 357–362.

    Article  CAS  Google Scholar 

  • Nizzoli, D., E. Carraro, V. Nigro & P. Viaroli, 2010. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Research 44: 2715–2724.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team, 2014. nlme: linear and nonlinear mixed effects models. R package version 3.1-118.

  • Quiñones-Rivera, Z. J., B. Wissel, N. N. Rabalais & D. Justic, 2010. Effects of biological and physical factors on seasonal oxygen dynamics in a stratified, eutrophic coastal ecosystem. Limnology and Oceanography 55: 289–304.

    Article  Google Scholar 

  • R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Racchetti, E., M. Bartoli, E. Soana, D. Longhi, R. R. Christian, M. Pinardi & P. Viaroli, 2011. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 103: 335–354.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., J. Sorensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnology and Oceanography 25: 403–411.

    Article  CAS  Google Scholar 

  • Ribaudo, C., M. Bartoli, E. Racchetti, D. Longhi & P. Viaroli, 2011. Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss. Aquatic Botany 94: 134–142.

    Article  CAS  Google Scholar 

  • Rose, C. & W. G. Crumpton, 1996. Effects of emergent macrophytes on dissolved oxygen dynamics in a prairie pothole wetland. Wetlands 16: 495–502.

    Article  Google Scholar 

  • Smemo, K. A. & J. B. Yavitt, 2011. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8: 779–793.

    Article  CAS  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, J., B. B. Jørgensen & N. P. Revsbech, 1979. A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microbial Ecology 5: 105–115.

    Article  PubMed  Google Scholar 

  • Stadmark, J. & L. Leonardson, 2007. Greenhouse gas production in a pond sediment: effects of temperature, nitrate, acetate and season. Science of the Total Environment 387: 194–205.

    Article  CAS  PubMed  Google Scholar 

  • Sun, M.-Y., S. G. Wakeham & C. Lee, 1997. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochimica et Cosmochimica Acta 61: 341–355.

    Article  CAS  Google Scholar 

  • Sweerts, J.-P. R. A., M.-J. Bar-Gilissen, A. A. Cornelese & T. E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnology and Oceanography 36: 1124–1133.

    Article  CAS  Google Scholar 

  • Viaroli, P. & R. R. Christian, 2003. Description of trophic status of an eutrophic coastal lagoon through potential oxygen production and consumption: defining hyperautotrophy and dystrophy. Ecological Indicators 3: 237–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Longhi.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhi, D., Bartoli, M., Nizzoli, D. et al. Do oxic–anoxic transitions constrain organic matter mineralization in eutrophic freshwater wetlands?. Hydrobiologia 774, 81–92 (2016). https://doi.org/10.1007/s10750-016-2722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2722-x

Keywords

Navigation