Skip to main content
Log in

Induction and development of adventitious shoots of Atropa baetica as a means of propagation

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In vitro propagation of Atropa baetica was established employing axillary buds. Single buds were cultured through a multiple shoot induction phase, rooting phase, and then followed by acclimatization in soil. For multiple shoot induction, Murashige and Skoog (MS) medium with 3% sucrose, supplemented with either 0.75 or 1.25 mg l-1 of BAP provided the best results with an average of 5.6 shoots per explant after 31 days of culture. Similar results were obtained with higher BAP concentrations (1.75–2.0 mg l-1); however, these media had a negative effect on the subsequent root induction due to residual BAP effect. Medium containing only 0.25 mg l-1 of BAP induced a significantly lower number of shoots. Root induction occurred spontaneously after transferring the shoots onto MS medium lacking any plant growth regulator. Moreover, root induction also occurred on media supplemented with 0.125 and 0.25 mg l-1 of NAA. On these two rooting media, this response was more prominent and with a higher number of roots per explant. Nevertheless, after 28 days on root induction medium, the number of rooted plantlets was similar on the three media. Acclimatization of plantlets in soil was very successful (95.52%). However, all plantlets which died during acclimatization were rooted on medium containing 0.25 mg l-1 NAA suggesting a negative carry over effect of this medium upon plantlet survival, irrespective of the initial BAP treatment used. On the other hand, karyological studies showed no variation in the number of chromosome (2n=72) in root tips of the plantlets produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aparicio, A., 1993. Planes de recuperación de especies vegetales amenazadas en el parque natural de la sierra de Grazalema (Cádiz-Málaga). Acta Bot Malacitana, 18: 199–221.

    Google Scholar 

  • Bajaj, Y.P.S. & L.K. Simola, 1991. I Atropa belladonna L.: In vitro culture, regeneration of plants, cryopreservation, and the production of tropane alkaloid. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry Vol 15. Medicinal and aromatic plants III, pp. 1–23. Springer-Verlag, Berlin.

    Google Scholar 

  • Benjamin, B.D., G. Roja, M.R. Heble & M.S. Chadha, 1987. Multiple shoot cultures of Atropa belladonna: effect of physicochemical factors on growth and alkaloid formation. J Plant Physiol 129: 129–135.

    CAS  Google Scholar 

  • Bramwell, D., 1990. The rôle of in vitro cultivation in the conservation of endangered species. In: J.E. Hernandez Bermudez, M. Clemente & V. Heywood (Eds.), Proceedings of the Intl. Conference on Conservation techniques in botanic gardens, pp. 3–15, Cordoba, Spain. Koenigstein: Koeltz Scientific Books.

    Google Scholar 

  • Cantos, M., J. Linñan, F. Pérez-Camacho & A. Troncoso, 1993. Obtención de plantas selectas de vid, variedad Zalema, libres de la virosis entrenudo corto. In: II Congreso Ibérico de Ciencias Hortícolas, vol. 1. pp. 705–709, Zaragoza, Spain.

    Google Scholar 

  • Christen, P., K. Aoki & K. Shimomura, 1992. Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with Agrobacterium rhizogenes A4. Plant Cell Rep 11: 597–600.

    Article  CAS  Google Scholar 

  • Drew, R.A., M.K. Smith & D.W. Anderson, 1992. Field evaluation of micropropagated bananas derived from plants containing Banana Bunchy-Top Virus. Plant Cell Tiss Org Cult 28: 203–205.

    Article  Google Scholar 

  • Fay, M.F., 1992. Conservation of rare and endangered plants using in vitro methods. J In vitro Cellular Develop. Biology-Plant 28: 1–4.

    Google Scholar 

  • Firn, R.D., 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol Plant 67: 267–272.

    Article  CAS  Google Scholar 

  • Flick, C.E., D.A. Evans & W.R. Sharp, 1983. Organogenesis In: D.A. Evans, W.R. Sharp, P.V. Ammirato, Y. Yamada (Eds.) Handbook of Plant Cell Culture Vol. 1, pp. 13–81. Macmillan Publishing Co. New York.

    Google Scholar 

  • Green, C.E. & C.A. Rhodes, 1982. Plant regeneration in tissue cultures of maize. In: W.F. Sheridan (Ed.), Maize for Biological Research, pp. 367–372, University of North Dakota Press, USA.

    Google Scholar 

  • Hernández-Bermejo, J.C. & M. Clemente-Muñoz, 1994. Protección de la Flora de Andalucia, Junta de Andalucia, C.C.M.A. and A.M.A., Spain.

    Google Scholar 

  • Herrera, C.M., 1987. Distribución, ecología y conservación de Atropa baetica Willk. (Solanaceae) en la Sierra de Cazorla. An J Bot Madrid, 43: 386–398.

    Google Scholar 

  • Hilton, M.G. & M.J.C. Rhodes, 1993. Factors affecting the growth and hyoscyamine production during batch culture of transformed roots of Datura stramonium. Planta Med 59: 340–344.

    CAS  Google Scholar 

  • Kato, R., H. Kamada & M. Asashima, 1989. Effects of high and very low magnetic fields on the growth of hairy roots of Daucus carota and Atropa belladonna. Plant Cell Physiol 30: 605–608.

    Google Scholar 

  • Malamug, J.J.K., H. Inden & T. Asahira, 1991. Plantlet regeneration and propagation from ginger callus. Sci Hort 48: 89–97.

    Article  Google Scholar 

  • Meins, F., 1983. Heritable variation in plant cell culture. Ann Rev Plant Physiol 34: 327–346.

    Article  Google Scholar 

  • Morte, M.A., M. Honrubia & A. Piqueras, 1992. Micropropagation of Tetraclinis articulata (Vahl) Masters (Crupessaceae). Plant Cell Tiss Org Cult 28: 231–233.

    Article  CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Sharp, J.M. & P.M. Doran, 1990. Characteristics of growth and tropane alkaloid synthesis in Atropa belladonna roots transformed by Agrobacterium rhizogenes. J Biotechn 16: 171–186.

    Article  CAS  Google Scholar 

  • Silvestre, S., 1986. Números cromósomicos para la flora española, 435–496. Lagascalia 14(2): 273–304.

    Google Scholar 

  • Snow R., 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Techn 8: 9–13.

    Google Scholar 

  • Trewavas, A.J., 1981. How do plant growth substances work?. Plant Cell and Environ 4: 203–228.

    CAS  Google Scholar 

  • Trewavas, A.J., 1992. How do plant growth substances work? II. Plant Cell Environ 14: 1–12.

    Article  Google Scholar 

  • Valdes, B., S. Talavera, E. Fernandez-Galiano, 1987. Solanaceae. In: Flora Vascular de Andalucía Occidental, pp. 351–362, Ketres Editorial S.A., Barcelona, Spain.

    Google Scholar 

  • Vieitez, A.M., M.C. Sanchez, J.B. Amomarco & A. Ballester, 1994. Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tiss Org Cult 37: 287–295.

    Google Scholar 

  • Zenkteler, M., 1971. Development of new plants from leaves and roots of Atropa belladonna L. in the in vitro culture. Acta Soc Bot Pol 40: 305–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarate, R., Cantos, M. & Troncoso, A. Induction and development of adventitious shoots of Atropa baetica as a means of propagation. Euphytica 94, 361–366 (1997). https://doi.org/10.1023/A:1002953929890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002953929890

Navigation