Skip to main content
Log in

Synthesis of low linolenic acid rapeseed (Brassica napus L.) through protoplast fusion

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Brassica napus somatic hybrids with low linolenic acid (18:3) content in their seed oil have been produced using fusion partners screened for low 18:3. One somatic hybrid contained only 3.5% 18:3, a level significantly below the mid-parental mean. The low level of 18:3 proved stable in the R1 generation. Oil content of the lowest 18:3 selection increased from the mid-parental mean (29.3%) in the R0 generation to 36% in a R1 field bulk. The R1 field population also showed some resistance to shattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arus, P. & T.J. Orton, 1983. Inheritance and linkage relationships of isozyme loci in Brassica oleracea. J Hered 74: 405–412.

    CAS  Google Scholar 

  • Bierenbaum, M.L., R.P. Reichstein, T.R. Watkins, W.P. Maginnis & M. Geller, 1991. Effects of canola oil on serum lipids in humans. J Am Coll Nutr 10: 228–233.

    PubMed  CAS  Google Scholar 

  • Chen, B.Y. & W.K. Heneen, 1989. Fatty acid composition of resynthesized Brassica napus L., B. campestris L. and B. alboglabra Bailey with special reference to the inheritance of erucic acid content. Heredity 63: 309–314.

    CAS  Google Scholar 

  • Diepenbrock, W. & R.F. Wilson, 1987. Genetic regulation of linolenic acid concentration in rapeseed. Crop Sci 27: 75–77.

    Article  CAS  Google Scholar 

  • Downey, R.K., 1988. From rapeseed to canola and beyond. In: L.L. Hardman & L. Waters (Eds) Strategies of alternative crop development: case histories, pp. 17–31. Center for alternative plant and animal products. Univ of Minnesota, St. Paul.

    Google Scholar 

  • Downey, R.K. & G. Robbelen, 1989. Brassica species. In: G. Robbelen, R.K. Downey & A. Ashri (Eds) Oil Crops of the World, pp. 339–362. McGraw-Hill Publishing Co., New York.

    Google Scholar 

  • Dupont, J., P.J. White, K.M. Johnston, H.A. Heggtveit, B.E. McDonald, S.M. Grundy & A. Bonanome, 1989. Food safety and health effects of canola oil. J Am Coll Nutr 8: 360–375.

    PubMed  CAS  Google Scholar 

  • Fahleson, J., I. Eriksson, Landgren, S. Stymne & K. Glimelius, 1994. Intertribal somatic hybrids between Brassica napus and Thlaspi perfoliatum with high content of T. perfoliatum-specific nervonic acid. Theor Appl Genet 87: 795–804.

    Article  CAS  Google Scholar 

  • Glimelius, K., J. Fahlesson, C. Sjodin, E. Sundberg & M. Djupsjobacka, 1986. Somatic hybridization and cybridization as potential methods for widening of the gene-pools of crops with Brassicaceae and Solanaceae. In: Horn, Jensen, Odenbach & Schieder (Eds) Genetic manipulation in plant breeding, pp. 663–682. Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Heath, D.W. & E.D. Earle, 1995. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theor Appl Genet 91: 1129–1136.

    Article  CAS  Google Scholar 

  • Heather, D.W., 1993. Fatty acid modification and other improvements in rapeseed (Brassica napus L.) through sexual and somatic hybridization. PhD Diss Cornell University, Ithaca, NY.

    Google Scholar 

  • Jourdan, P.S., E.D. Earle & M.A. Mutschler, 1989. Synthesis of male sterile, triazine-resistant Brassica napus by somatic hybridization between cytoplasmic male sterile B. oleracea and atrazine-resistant B. campestris. Theor Appl Genet 78: 445–455.

    Google Scholar 

  • Mahler, K.A. & D.L. Auld, 1989. Fatty acid composition of 2100 accessions of Brassica. Idaho Agric Exp Stn Misc Ser 125.

  • Ozminkowski, R.H. Jr., 1992. Comparison of sexual and somatic interspecific hybridization in Brassica. PhD Dissertation, Ohio State Univ., Columbus, OH.

    Google Scholar 

  • Pelletier, G., C. Primard, F. Vedel, P. Chetrit, R. Remy, P. Rousselle & M. Renard, 1983. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191: 244–250.

    Article  CAS  Google Scholar 

  • Prevot, A., J.L. Perrin, G. LaClaverie, P. Auge & J.L. Coustille, 1990. A new variety of low linolenic rapeseed oil characteristics and room odor tests. J Am Oil Chem Soc 67: 161–164.

    CAS  Google Scholar 

  • Roy, N.N. & A.W. Tarr, 1986. Development of near-zero linolenic acid (18:3) lines of rapeseed (Brassica napus). Z Pflanzenzücht 96: 218–223.

    CAS  Google Scholar 

  • Roy, N.N. & A.W. Tarr, 1987. Prospects for the development of rapeseed (Brassica napus L.) with improved linoleic and linolenic acid content. Plant Breeding 98: 89–96.

    Article  CAS  Google Scholar 

  • Scarth, R., P.B.E. McVetty, S.R. Rimmer & B.R. Stefansson, 1988. Stellar low linolenic-high linoleic acid summer rape. Can J Plant Sci 68: 509–512.

    Article  CAS  Google Scholar 

  • Schenck, H.R. & G. Robbelen, 1982. Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z Pflanzenzüchtg 89: 278–288.

    Google Scholar 

  • Taguchi, T. & T. Kameya, 1986. Production of somatic hybrid plants between cabbage and chinese cabbage through protoplast fusion. Jpn J Breed 36: 185–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heath, D.W., Earle, E.D. Synthesis of low linolenic acid rapeseed (Brassica napus L.) through protoplast fusion. Euphytica 93, 339–343 (1997). https://doi.org/10.1023/A:1002948600224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002948600224

Navigation