Skip to main content
Log in

Induction of Heat Shock Proteins and Acquisition of Thermotolerance in Germinating Pigeonpea Seeds

  • Published:
Biologia Plantarum

Abstract

Heat shock proteins (HSPs) ranging in molecular masses from 14 to 110 kDa were induced in embryonic axes of germinating Cajanus cajan (L.) Millspaugh seeds after exposure to 40 °C for 1 or 2 h. At 45 °C, there was a marked decline in synthesis of HSPs. A close relationship was observed between HSPs induced and the growth of the germinating seeds. Pretreatment of germinating seeds at 40 °C for 1 h or 45 °C for 10 min followed by incubation at 28 °C for 3 h led to considerable thermotolerance (45 °C, 2 h) and the recovery of protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M., Bonner, J.: The induction of gene activity in Drosophila by heat shock.-Cell 17: 241–254, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, T., Altschuler, M., McDaniel, C.N., Mascarenhas, J.P.: Heat shock induced proteins in plant cells.-Dev. Genet. 1: 331–340, 1980.

    Article  CAS  Google Scholar 

  • Baszczynski, C.L., Walden, D.B., Atkinson, B.G.: Regulation of gene expression in corn (Zea mays L.) by heat shock.-Can. J. Biochem. 60: 569–579, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Black, A.R., Subjeck, J.R.: Correlation in the recovery of normal protein synthesis and the development of thermotolerance.-J. Cell Biol. 103: 188a, 1986.

    Google Scholar 

  • Black, A.R., Subjeck, J.R.: Involvement of rRNA synthesis in enhanced survival and recovery of protein synthesis seen in thermotolerance.-J. Cell Physiol. 138: 439–449, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.M., Kamisaka, S., Masuda, Y.: Enhancing effects of heat shock and gibberellic acid on the thermotolerance in etiolated Vigna radiata. I. Physiological aspects on thermotolerance.-Physiol. Plant. 66: 595–601, 1986.

    Article  CAS  Google Scholar 

  • Cooper, P., Ho, T.H.D.: Heat shock proteins in maize.-Plant Physiol. 71: 215–222, 1983.

    PubMed  CAS  Google Scholar 

  • Feierabend, J., Reichhardt, U.S.: Biochemical differentiation of plastids and other organelles in rye leaves with a high-temperature induced deficiency of plastid ribosomes.-Planta 129: 133–145, 1976.

    Article  CAS  Google Scholar 

  • Ferguson, I.B., Lurie, S., Bowen, J.H.: Protein synthesis and breakdown during heat shock of cultured pear (Pyrus communis L.) cells.-Plant Physiol. 104: 1429–1437, 1994.

    PubMed  CAS  Google Scholar 

  • Howarth, C.J.: Heat shock proteins in Sorghum bicolor and Pennisetum americanum I. Genotypic and developmental variation during seed germination.-Plant Cell Environ. 12: 471–477, 1989.

    Article  CAS  Google Scholar 

  • Howarth, C.J., Ougham, H.J.: Gene expression under temperature stress.-New Phytol. 125: 1–26, 1993.

    Article  CAS  Google Scholar 

  • Key, J.L., Lin, C.Y., Chen, Y.M.: Heat shock proteins of higher plants.-Proc. nat. Acad. Sci. USA 78: 3526–3530, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kimple, J.A., Key, J.L.: Heat shock in plants.-Trends biochem. Sci. 10: 353–357, 1985.

    Article  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the heat of bacteriophage T4.-Nature 227: 680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C., Roberts, J.K., Key, J.L.: Acquisition of thermotolerance in soybean seedlings.-Plant Physiol. 74: 152–160, 1984.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.L.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Mans, R.J., Novelli, G.D.: Measurement of the incorporation of radioactive amino acids into protein by a filter paper disc method.-Arch. Biochem. Biophys. 94: 48–53, 1961.

    Article  CAS  Google Scholar 

  • Mizzen, L.A., Welch, W.J.: Characterization of the thermotolerant cell. I. Effect on protein synthesis activity and regulation of heat shock protein 70 expression.-J. Cell Biol. 106: 1105–1116, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Moisyadi, S., Harrington, H.M.: Characterization of the heat shock response in cultured sugarcane cells.-Plant Physiol. 90: 1156–1162, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Nover, L., Scharf, K.D., Neumann, D.: Formation of cytoplasmic heat shock granuels in tomato cell cultures and leaves.-Mol. cell. Biol. 3: 1648–1655, 1983.

    PubMed  CAS  Google Scholar 

  • Ougham, H.J., Stoddart, J.L.: Development of a laboratory screening technique based on embryo protein synthesis for the assessment of high-temperature susceptibility during germination of sorghum bicolor.-Exp. Agr. 21: 343–355, 1985.

    CAS  Google Scholar 

  • Ougham, H.J., Stoddart, J.L.: Synthesis of heat shock protein and acquisition of thermotolerance in high temperature tolerant and high temperature susceptible lines of Sorghum.-Plant Sci. 44: 163–167, 1986.

    Article  CAS  Google Scholar 

  • Pelham, H.R.B.: Activation of heat shock genes in eukaryotes.-Trends Genet 1: 31–35, 1985.

    Article  CAS  Google Scholar 

  • Petersen, N.S., Mitchel, H.K.: Recovery of protein synthesis after heat shock: Prior heat treatment affects the ability of cells to translate mRNA.-Proc. nat. Acad. Sci. USA 78: 1708–1711, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Riley, G.J.P.: Effects of high temperature on the germination of maize (Zea mays L.).-Planta 151: 68–74, 1981.

    Article  Google Scholar 

  • Rochester, D.E., Winer, J.A., Shah, D.M.: The structure and expression of maize genes encoding the major heat shock protein, HSP 70.-Eur. mol. Biol. Org. J. 5: 451–458, 1986.

    CAS  Google Scholar 

  • Rose, D.W., Welch, W.J., Krainer, G., Hardesty, B.: Possible involvement of the 90 kDa heat shock protein in the regulation of protein synthesis.-J. biol. Chem. 264: 6239–6244, 1989.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M.J., Ashburner, M., Tissieres, A.: Heat Shock from Bacteria to Man.-Cold Spring Harbour, New York 1982.

    Google Scholar 

  • Sivaramakrishnan, S., Patel, V.Z., Soman, P.: Heat shock proteins of sorghum (Sorghum bicolor (L.) Moench) and pearl millet (Pennisetum glaucum (L.) R.Br.) cultivars with differing heat tolerance at seedling establishment stage.-J. exp. Bot. 41: 249–254, 1990.

    CAS  Google Scholar 

  • Somers, D.J., Cummins, W.R., Filion, W.G.: Characterization of the heat shock response in spinach (Spinacea oleracea L.).-Biochem. Cell Biol. 67: 113–120, 1989.

    Article  CAS  Google Scholar 

  • Vierling, E.: The roles of heat shock proteins in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579–620, 1991.

    Article  CAS  Google Scholar 

  • Welch, W.J., Suhan, J.P.: Morphological studies of the mammalian stress response. Characterization of changes in cytoplasmic organelles, cytoskeleton and nucleoli, and appearance of intranuclear action filaments in rat fibroblasts after heat shock.-J. Cell Biol. 101: 1198–1211, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sri Devi, V., Satyanarayana, N. & Madhava Rao, K. Induction of Heat Shock Proteins and Acquisition of Thermotolerance in Germinating Pigeonpea Seeds. Biologia Plantarum 42, 589–597 (1999). https://doi.org/10.1023/A:1002635602823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002635602823

Navigation