Skip to main content
Log in

On The Influence Of The Eulerian Velocity PDF Closure On The Eddy Diffusion Coefficient

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The flux-gradient model, often used to describe turbulent dispersion, implicitly defines an eddy diffusion coefficient K that is known to be related to the Eulerian probability density function (pdf) of the turbulent velocity field. In the strict limit of applicability of Fick's law, the relationship between K and the pdf is used to investigate the influence of non-Gaussianity on dispersion in homogeneous turbulence. A bi-Gaussian pdf is used as a closure model that allows for separate studies of skewness and kurtosis variations. The choice of model parameters can have a significant influence on K, especially when the pdf is bimodal. Both arbitrariness of the closure and bimodality are then reduced using the maximum entropy criterion for the selection of the free parameter of the closure scheme, together with the assumption that the model is valid only for those values of the parameters for which a unimodal pdf is possible. The variations of K are found to be sensitive to both skewness and kurtosis showing a more complex behaviour than that found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baerentsen, J. H. and Berkowicz, R.: 1984, ‘Monte-Carlo Simulation of Plume Diffusion in the Convective Boundary Layer’, Atmos. Environ. 18, 701–712.

    Google Scholar 

  • Cohen, A. C.: 1962, ‘Estimation in Mixture of Two Normal Distribution’, Technometrics 9, 15–28.

    Google Scholar 

  • Corrsin, S.: 1974, ‘Limitation of Gradient Transport Models in Random Walks and in Turbulence’, Adv. Geophys. 18A, 25–60.

    Google Scholar 

  • Du, S., Wilson, J. D., and Yee, E.: 1994, ‘Probability Density Functions for Velocity in the Convective Boundary Layer, and Implied Trajectory Models’, Atmos. Environ. 28, 1211–1217.

    Google Scholar 

  • Durst, F., Jovanovic, J., and Kanevce, L.: 1987, ‘Probability Density Distribution in Turbulent Wall Boundary-Layer Flows’, in F. Durst, B. E. Launder, J. L. Lumley, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows, Vol. 5, Springer-Verlag, pp. 197–220.

  • Heinz, S. and Schaller, H.: 1996, ‘On the Influence of Non-Gaussianity on Turbulent Transport’, Boundary-Layer Meteorol. 81, 147–166.

    Google Scholar 

  • Isichenko, M. B.: 1992, ‘Percolation, Statistical Topography, and Transport in Random Media’, Rev. Modern Phys. 64, 961–1043.

    Google Scholar 

  • Jaynes, E. T.: 1957, ‘Information Theory and Statistical Mechanics’, Phys. Rev. 106, 620–630.

    Google Scholar 

  • Lenschow, D. H., Mann, J., and Kristensen, L.: 1994, ‘How Long is Long Enough When Measuring Fluxes and Other Turbulence Statistics’, J. Atmos. Oceanic Tech. 11, 661–673.

    Google Scholar 

  • Luhar, A. K. and Britter, R. E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’, Atmos. Environ. 23, 1911–1924.

    Google Scholar 

  • Luhar, A. K., Hibberd, M. F., and Hurley, P. J.: 1996, ‘Comparison of Closure Schemes Used to Specify the Lagrangian Stochastic Dispersion Models for Convective Conditions’, Atmos. Environ. 30, 1407–1418.

    Google Scholar 

  • Maurizi, A.: 1998, ‘A New Probability Density Function Closure Model for Lagrangian Stochastic Dispersion Simulation’, in C. A. Brebbia, C. Ratto, and H. Power (eds.), Air Pollution VI: Modelling, Monitoring and Management, Computational Mechanics Publications, pp. 879–888.

  • Maurizi, A. and Tampieri, F.: 1999, ‘Velocity Probability Density Functions in Lagrangian Dispersion Models for Inhomogeneous Turbulence’, Atmos. Environ. 33, 281–289.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. 1, MIT Press, Cambridge, 769 pp.

    Google Scholar 

  • Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’, Proc. London Math. Soc. 20, 196–211.

    Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in H. v. D. F. T. M. Nieuwstadt (ed.), Atmospheric Turbulence and Air Pollution Modelling, Reidel, Dordrecht, pp. 37–68.

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • Tinarelli, G., Anfossi, D., Brusasca, G., Ferrero, E., Giostra, U., Morselli, M. G., Moussafir, J., Tampieri, F., and Trombetti, F.: 1994, ‘Lagrangian Particle Simulation of Tracer Dispersion in the Lee of a Schematic Two-Dimensional Hill’, J. Appl. Meteorol. 33, 744–756.

    Google Scholar 

  • Weil, J. C.: 1990, ‘A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion Using a Lagrangian Stochastic Model’, J. Atmos. Sci. 47, 501–515.

    Google Scholar 

  • Wyngaard, J. C. and Weil, J. C.: 1991, ‘Transport Asymmetry in Skewed Turbulence’, Phys. Fluids A 3, 155–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurizi, A., Lorenzani, S. On The Influence Of The Eulerian Velocity PDF Closure On The Eddy Diffusion Coefficient. Boundary-Layer Meteorology 95, 427–436 (2000). https://doi.org/10.1023/A:1002613403385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002613403385

Navigation