Skip to main content

Relative Dispersion in Direct Cascades of Generalized Two-Dimensional Turbulence

  • Conference paper
  • First Online:
Turbulent Cascades II

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

  • 555 Accesses

Abstract

The statistical features of turbulent flows depend on the locality properties of energy transfers among scales. The latter, in turn, may have consequences for the relative dispersion of passive particles. We consider a class of two-dimensional flows of geophysical interest, namely \(\alpha \)-turbulence models, possessing different locality properties. We numerically study relative dispersion in such flows using both fixed-time and fixed-scale indicators. The results are compared with predictions based on phenomenological arguments to explore the relation between the locality of the turbulent cascade and that of relative dispersion. We find that dispersion behaviors agree with expectations from local theories, for small enough values of the parameter \(\alpha \) (dynamics close to surface quasi geostrophy) and for sufficiently small initial pair separations. Non-local dispersion is instead observed for the largest \(\alpha \) considered (quasi-geostrophic model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraichnan, R.H.: Phys. Fluids 10, 1417 (1967)

    Article  MathSciNet  Google Scholar 

  2. Boffetta, G., Ecke, R.E.: Annu. Rev. Fluid Mech. 44, 427 (2012)

    Article  Google Scholar 

  3. Morel, P., Larcheveque, M.: J. Atmos. Sci. 31, 2189 (1974)

    Article  Google Scholar 

  4. Bennett, A.F.: J. Atmos. Sci. 41, 1881 (1984)

    Article  Google Scholar 

  5. LaCasce, J.H.: Prog. Oceanogr. 77, 1 (2008)

    Article  Google Scholar 

  6. Berti, S., dos Santos, F., Lacorata, G., Vulpiani, A.: J. Phys. Oceanogr. 41, 1659 (2011)

    Article  Google Scholar 

  7. Er-El, J., Peskin, R.L.: J. Atmos. Sci. 38, 2264 (1981)

    Article  Google Scholar 

  8. Lacorata, G., Aurell, E., Legras, B., Vulpiani, A.: J. Atmos. Sci. 61, 2936 (2004)

    Article  Google Scholar 

  9. Jullien, M.-C.: Phys. Fluids 15, 2228 (2003)

    Article  Google Scholar 

  10. Rivera, M.K., Ecke, R.E.: Phys. Rev. Lett. 95, 194503 (2005)

    Article  Google Scholar 

  11. Babiano, A., Basdevant, C., Le Roy, P., Sadourny, R.: J. Fluid Mech. 214, 535 (1990)

    Article  Google Scholar 

  12. Boffetta, G., Sokolov, I.: Phys. Fluids 14, 3224 (2002)

    Article  Google Scholar 

  13. Nicolleau, F., Yu, G.: Phys. Fluids 16, 2309 (2004)

    Article  Google Scholar 

  14. Pierrehumbert, R.T., Held, I.M., Swanson, K.L.: Chaos. Solitons and Fractals 4, 1111 (1994)

    Article  Google Scholar 

  15. Lapeyre, G.: Fluids 2, 7 (2017)

    Article  Google Scholar 

  16. Klein, P., Lapeyre, G., Roullet, G., Le Gentil, S., Sasaki, H.: Geophys. Astrophys. Fluid Dyn. 105, 421 (2011)

    Article  MathSciNet  Google Scholar 

  17. Salazar, J.P.L.C., Collins, L.R.: Annu. Rev. Fluid Mech. 41, 405 (2009)

    Article  Google Scholar 

  18. Batchelor, G.K., Meteorol, Q.J.R.: Soc. 551, 133 (1950)

    Google Scholar 

  19. Bourgoin, M., Ouellette, N.T., Xu, H., Berg, J., Bodenschatz, E.: Science 311, 835 (2006)

    Article  Google Scholar 

  20. Foussard, A., Berti, S., Perrot, X., Lapeyre, G.: J. Fluid Mech. 821, 358 (2017)

    Article  MathSciNet  Google Scholar 

  21. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: J. Rev. A 30, 1 (1997)

    Google Scholar 

  22. Özgökmen, T.M., Poje, A.C., Fischer, P.F., Childs, H., Krishnan, H., Garth, C., Haza, A.C., Ryan, E.: Ocean Model. 52, 16 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by TOSCA/CNES as a contribution to the SWOT project. Figures are adapted from [20] (reproduced with permission).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Berti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foussard, A., Berti, S., Perrot, X., Lapeyre, G. (2019). Relative Dispersion in Direct Cascades of Generalized Two-Dimensional Turbulence. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics