Skip to main content
Log in

Solar Flare Phenomena as Phase Transition Caused by Frustration of Current Percolation

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We present analysis of flare process as "phase transition" phenomena caused by frustration of current percolation in turbulent current sheet. We show that numerous plasma instabilities in the sheet will form random resistors network with "bad resistors"-turbulent domains and "good resistors"-normal plasma domains. We show that current percolation in random inhomogeneous turbulent current sheet like to another percolated systems is able to produce phase transition with drastic change of global properties of system as whole (conductivity, heat-conductivity, elasticity,) on the threshold value of critical density of "bad" elements (p= p c ). Another property of solar flares, what may be understood on the base of percolation approach is observed universal power dependence of frequency of flares and microflares (elementary events-spikes) on their amplitude: N W W k. It may be explained as natural sequence of universal power dependence of clusters' masses in percolated systems on their sizes. The slope of resulted spectra is determined by the fractal dimension of clusters and depends on feedback between current propagation and turbulence generation. We show that percolation approach allow to explain phenomena of preflare bursts-precursors observed in radio and hard X-ray. It may be understood as results of pre-catastrophic lose of elasticity of system to small disturbance on the percolation threshold, with formation of short life nuclear of "new phase".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broadbent S.R. and Hammersley J.M., 1957, Proceed. Camb. Phylos. Soc., 53, 629.

    Article  MATH  MathSciNet  Google Scholar 

  • Buchner J., (1988),, this issue Crosby N., Aschwanden M., Dennis B., 1993, Solar Phys, 143, 275.

  • Epstein, A.J., 1987, in Handbook of Conducting Polymers, Vol.2, T.A. Skotheim (ed.)., 1041.

  • Feder J., Fractals, 1988, (Plenum Press).

  • Furth H., Rosenbluth M., Killen J., 1963, Phys. Fluids, 6, 459.

    Article  ADS  Google Scholar 

  • Gershberg R.E., Shahovskaya N.I., 1983, Astroph. and Space Science, 95,2, 235.

    Article  ADS  Google Scholar 

  • Kirkpatrick S., 1973, Reviews of Modern Physics, 45,4, 574.

    Article  ADS  Google Scholar 

  • Kruskal M., Shwarzschild M., 1954, M. Proceed. Roy. Soc., 223A, 348.

    ADS  Google Scholar 

  • Kurochka L., 1987, Astromicheskii Zhurnal, (Soviet Astronomy), 64,2, 443.

    ADS  Google Scholar 

  • Lu E., hamilton, R.J., 1991, Atrophys. J., 380, L89.

    Article  ADS  Google Scholar 

  • Mikhailovskii A.B., 1975, Theory of Plasma Instabilities, (Moscow, Atomizdat), V.1, 155, Instabilities in Inhomogeneous Plasma, Consulants Bureau, N-Y.

    Google Scholar 

  • Poston T., Stewart I., 1978, Catastrophe Theory and Its Application, Surveys and references works in mathematics,Pitman, London.

    Google Scholar 

  • Pustil'nik L., 1978, Astronomicheskii Zhurnal, (Soviet Atronomy), 55, 607.

    ADS  Google Scholar 

  • Pustil'nik L., 1980, Astronomicheskii Zhurnal, (Soviet Atronomy), 57, 601.

    ADS  Google Scholar 

  • Pustil'nik L., 1997, Astrophysics and Space Science, 252, 325.

    Article  MATH  ADS  Google Scholar 

  • Rammal R., Tannous C., Breton P., Tremblay A.M.S., 1985, Phys. Rev. Lett., 54, 1718.

    Article  ADS  Google Scholar 

  • Shimuzu T., PASJ, 1995, 47, 251.

    ADS  Google Scholar 

  • Seiden P.S., Wentzel D.G., 1996, Ap. J., 522.

  • Shibata, K., 1997, Proc. of Workshop on Solar Flares and Related Disturbances, T. Sakurai, E. sagawa and M. Akioka (eds), Hiraiso/CRL.

  • Shklovskii B.I., Efros A.L., 1984, Electronic Propeties of Doped Semiconductors, (Heidelberg, Springer Verlag, 1984)

    Google Scholar 

  • Stanley H.E., 1971; Introduction to Phase Transition and critical Phenomena, (Oxford, OUP).

    Google Scholar 

  • Stauffer D., Aharony A., 1992, Introduction to Percolation Theory, Taylor&Francis, London

    Google Scholar 

  • Srelniker Ya., 1998, private communication. Tajima T., Shibata K., 1997, Plasma Astrophysics, Addison-Wesley.

  • Tappin, 1991, Astron.&Astrophys. Suppl. Series, 87, 1991.

    Google Scholar 

  • UenN, S., Mineshige, S., Neogoro, H., Shibata, K., Hudson, H.F., 1997, Astrophys. J., 484, 920.

    Article  ADS  Google Scholar 

  • Vedernikov, N.F., Mukimov, K.M., Sigal, G.P., 1991, Superconductivity (Sverhprovodimost: fizika, chimiya, technika (russian)), 7, 316.

    Google Scholar 

  • Vilmer N., Trotted G., in “Coronal Physics from Radio and Space Observations”, (Lecture Notes in Physics), Springer, 28.

  • Zelenyi, I.M., Milovanov A.V., Gaetano Z., 1998, this issue.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustil'nik, L. Solar Flare Phenomena as Phase Transition Caused by Frustration of Current Percolation. Astrophysics and Space Science 264, 171–182 (1998). https://doi.org/10.1023/A:1002433802969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002433802969

Keywords

Navigation