Skip to main content
Log in

Nonlocal Turbulent Mixing Based on Convective Adjustment Concepts (Ntac)

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A nonlocal turbulent mixing parameterization is introduced in this study and denoted by the acronym NTAC, which stands for Nonlocal parameterization of Turbulent mixing using convective Adjustment Concepts. NTAC uses the average value of quantities in the turbulent domain in much the same way that local convective adjustment schemes use the average potential temperature. Averages are determined in the region with non-convective turbulence using information from the two end layers (denoted by TLA, Two Layer Average), while all layers contribute to the average in regions with convective turbulence (denoted by CLA, Convective Layer Average). The NTAC parameterization estimates the mixing percentage and uses this percentage as a mixing coefficient. These percentages are determined from a simplified turbulent kinetic energy equation. The scheme is versatile, conservative, and when programmed efficiently the proposed parameterization is a computationally acceptable nonlocal procedure that can be used in many existing numerical weather prediction forecast models.

Numerical weather forecast model simulations using the NTAC parameterization and traditional K-theory are compared against radiosonde data. The accuracy of the proposed NTAC parameterization is found to be competitive with K theory. The greatest improvement of the NTAC over K-theory occurs during the daytime and early nighttime hours when (dry) convective activity is high. Also, areal cloud coverage is increased by the NTAC parameterization. Our findings show that the greatest nonlocal vertical mixing occurs between the layer nearest the earth's surface and the remaining layers making up the planetary boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alapaty, K., Pleim, J. E., Raman, S., Niyogi, D. S., and Byun, D. W.: 1997, 'Simulation of Atmospheric Boundary Layer Processes Using Local-and Nonlocal-Closure Schemes', J. Appl. Meteorol. 36, 214–233.

    Google Scholar 

  • Andre, J. C., De Moor, G., Lacarrere, P., and Du Vachat, R.: 1978, 'Modeling the 24-Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer', J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Anthes, R. A., Hsie, E.-Y., and Kuo, Y.-H.: 1987, 'Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4)', NCAR Tech. Note NCAR/TN-282, 66 pp.

  • Ayotte, K. W., Sullivan, P.P., Andren, A., Doney, S. C., Holtslag, A. A. M., Large, W. G., McWilliams, J. C., Moeng, C-H., Otte, M. J., Tribbia, J. J., and Wyngaard, J. C.: 1996, 'An Evaluation of Neutral and Convective Planetary Boundary-Layer Parameterizations Relative to Large Eddy Simulations', Boundary-Layer Meteorol. 79, 131–175.

    Google Scholar 

  • Blackadar, A. K.: 1978, 'Modeling Pollutant Transfer During Daytime Convection', in Preprints Fourth Symposium on Atmospheric Turbulence, Diffusion and Air Quality. Reno, Amer. Meteor. Soc., pp. 443–447.

  • Bourke, W. and McGregor, J. L.: 1983, 'A Nonlinear Vertical Mode Initialization Scheme for a Limited Area Prediction Model', Mon. Wea. Rev. 111, 2285–2297.

    Google Scholar 

  • Boussinesq, J.: 1877, 'Essai sur la theorie des eaux courantes', Mem. pres. par div. savants a l'Academie Sci., Paris 23, 1–680.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Changnon, S. A., Kunkel, K. E., and Reinke, B. C.: 1996, 'Impacts and Responses to the 1995 Heat Wave: A Call to Action', Bull. Amer. Meteorol. Soc. 77, 1497–1505.

    Google Scholar 

  • Chrobok, G., Raasch, S., and Etling, D.: 1992, 'A Comparison of Local and Non-Local Turbulence Closure Methods for the Case of a Cold Air Outbreak', Boundary-Layer Meteorol. 58, 69–90.

    Google Scholar 

  • Diak, G. R., Kim, D., Whipple, M. S., and Wu, X.: 1992, 'Preparing for the AMSU', Bull. Amer. Meteorol. Soc. 73, 1971–1984.

    Google Scholar 

  • Dudhia, J.: 1989, 'Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model', J. Atmos. Sci. 46, 3077–3107.

    Google Scholar 

  • Ebert, E. E., Schumann, U., and Stull, R. B.: 1989, 'Nonlocal Turbulent Mixing in the Convective Boundary Layer Evaluated from Large-Eddy Simulation', J. Atmos. Sci. 46, 2178–2207.

    Google Scholar 

  • Fiedler, B. H. and Moeng, C.-H.: 1985, 'A Practical Integral Closure Model for Mean Vertical Transport of a Scaler in a Convective Boundary Layer', J. Atmos. Sci. 42, 359–363.

    Google Scholar 

  • Haltiner, G. J. and Williams, R. T.: 1980, Numerical Prediction and Dynamic Meteorology, Wiley, New York, 477 pp.

    Google Scholar 

  • Heisenberg, W.: 1948, 'On the Theory of Statistical and Isotropic Turbulence', Proc. Roy. Soc. London, Ser. A 195, 402–406.

    Google Scholar 

  • Holt, T. and Raman, S.: 1988, 'A Review and Comparative Evaluation of Multilevel Boundary Layer Parameterizations for First-Order and Turbulent Kinetic Energy Closure Schemes', Rev. Geophys. 26, 761–780.

    Google Scholar 

  • Kessler, E.: 1974, 'Model of Precipitation and Vertical Air Currents', Tellus 26, 519–542.

    Google Scholar 

  • Klemp, J. B. and Lilly, D. K.: 1978, 'Numerical Simulation of Hydrostatic Mountain Waves', J. Atmos. Sci. 35, 78–107.

    Google Scholar 

  • Kondo, J., Saigusa, N., and Takeshi, S.: 1990, 'A Parameterization of Evaporation from Bare Soil Surfaces', J. Appl. Meteorol. 29, 385–389.

    Google Scholar 

  • Kraichnan, R. H.: 1964, 'Direct-Interaction Approximation for Shear and Thermally Driven Turbulence', Phys. Fluids 7, 1048–1062.

    Google Scholar 

  • Kunkel, K. E., Changnon, S. A., Reinke, B. C., and Arritt, R. W.: 1996, 'The July 1995 Heat Wave in the Midwest: A Climatic Perspective and Critical Weather Factor', Bull. Amer. Meteorol. Soc. 77, 1507–1518.

    Google Scholar 

  • Lee, T. J. and Pielke, R. A.: 1992, 'Estimating the Soil Surface Specific Humidity', J. Appl. Meteorol. 31, 480–484.

    Google Scholar 

  • Leslie, L. M., Mills, G. A., Logan, L. W., Gauntlett, D. J., Kelly, G. A., McGregor, J. L., and Manton, M. J.: 1985, 'A High Resolution Primitive Equation NWP Model for Operations and Research', Aust. Meteorol. Mag. 33, 11–35.

    Google Scholar 

  • Louis, J. F.: 1979, 'A Parametric Model of Vertical Eddy Fluxes in the Atmosphere', Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Mahrt, L.: 1989, 'Limit Cycle Mixing', J. Atmos. Sci. 46, 1061–1075.

    Google Scholar 

  • McGregor, J. L., Leslie, L. M., and Gauntlett, D. J.: 1978, 'The ANMRC Limited-Area Model: Consolidated Formulation and Operational Results', Mon. Wea. Rev. 106, 427–438.

    Google Scholar 

  • Mellor, G. L.: 1973, 'Analytic Prediction of the Properties of Stratified Planetary Surface Layers', J. Atmos. Sci. 30, 1061–1069.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, 'A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers', J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mills, G. A. and Seaman, R. S.: 1990, 'The BMRC Regional Data Assimilation System', Mon. Wea. Rev. 118, 1217–1237.

    Google Scholar 

  • Naidu, P. S.: 1996, Modern Spectrum Analysis of Time Series, CRC Press, New York, 399 pp.

    Google Scholar 

  • Orlanski, I.: 1981, 'The Quasi-Hydrostatic Approximation', J. Atmos. Sci. 38, 572–582.

    Google Scholar 

  • Pan, Z., Benjamin, S. G., Brown, J. M., and Smirnova, T.: 1994, 'Comparative Experiments with MAPS on Different Parameterization Schemes for Surface Moisture Flux and Boundary-Layer Processes', Mon. Wea. Rev. 122, 449–470.

    Google Scholar 

  • Prandtl, L.: 1925, 'Bericht über Untersuchingen zur ausgebildeten', Turbulenz. Z. ang. Math. Mech. 5, 136–137.

    Google Scholar 

  • Raymond, W. H.: 1988, 'High-Order Low-Pass Implicit Tangent Filters for Use in Finite Area Calculations', Mon. Wea. Rev. 116, 2132–2141.

    Google Scholar 

  • Raymond, W. H. and Stull, R. B.: 1990, 'Application of Transilient Turbulence Theory to Mesoscale Numerical Weather Forecasting', Mon. Wea. Rev. 118, 2471–2499.

    Google Scholar 

  • Raymond, W. H.: 1994, 'Diffusion and Numerical Filters', Mon. Wea. Rev. 122, 757–761.

    Google Scholar 

  • Raymond, W. H., Olson, W. S., and Callan, G.: 1995, 'Diabatic Forcing and Initialization with Assimilation of Cloud and Rain Water in a Forecast Model', Mon. Wea. Rev. 123, 366–382.

    Google Scholar 

  • Raymond, W. H. and Aune, R. M.: 1998, 'Improved Precipitation Forecasts Using Parameterized Feedbacks in a Hydrostatic Forecast Model', Mon. Wea. Rev. 126, 693–710.

    Google Scholar 

  • Stull, R. B.: 1984, 'Transilient Turbulence Theory. Part 1: The Concept of Eddy Mixing Across Finite Distances', J. Atmos. Sci. 41, 3351–3365.

    Google Scholar 

  • Stull, R. B. and Hasegawa, T.: 1984, 'Transilient Turbulence Theory. Part II: Turbulence Adjustment', J. Atmos. Sci. 41, 3368–3379.

    Google Scholar 

  • Stull, R. B. and Driedonks, A. G. M.: 1987, 'Application of the Transilient Turbulence Parameterization to Atmospheric Boundary Layer Simulations', Boundary-Layer Meteorol. 40, 209–239.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Stull, R. B.: 1992, 'Review of Non-Local Mixing in Turbulent Atmospheres: Transilient Turbulence Theory', in H. Kaplan and N. Dinar (eds.), Transport and Diffusion in Turbulent Fields, Special Issue of Boundary-Layer Meteorol. 62, 21–96.

  • Sundqvist, H., Berge, E., and Kristjansson, J. E.: 1989, 'Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model', Mon. Wea. Rev. 117, 1641–1657.

    Google Scholar 

  • Wyngaard, J. C.: 1982, 'Boundary Layer Modeling', in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, Reidel, Dordrecht, pp. 69–106.

    Google Scholar 

  • Zeman, O.: 1981, 'Progress in the Modeling of Planetary Boundary Layers', Ann. Rev. Fluid Mech. 13, 253–272.

    Google Scholar 

  • Zhang, D. and Anthes, R. A.: 1982, 'A High-Resolution Model of the Planetary Boundary Layer: Sensitivity Tests and Comparisons with SESAME-79 Data', J. Appl. Meteorol. 21, 1594–1609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, W.H. Nonlocal Turbulent Mixing Based on Convective Adjustment Concepts (Ntac). Boundary-Layer Meteorology 92, 263–291 (1999). https://doi.org/10.1023/A:1002029909587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002029909587

Navigation