Skip to main content
Log in

Parallel visual processes in symmetry perception: Normality and pathology

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Mirror symmetry is one of those regularities for which the visual system seems to have developed a special sensitivity. It is detected robustly and efficiently in a single glance, suggesting that the basic processes do not perform a serial, pointwise comparison of structural elements but rather operate in parallel. Psychophysical evidence relating to the processing mechanisms will be reviewed. Although the focus will be on symmetry perception in normal vision, interesting findings on symmetry perception in observers with deficient vision (e.g., retinitis pigmentosa, visual hemineglect) will also be touched upon briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Washburn DK, Crowe DW. Symmetries of culture. Seattle, WA: University of Washington Press, 1988.

    Google Scholar 

  2. Carmody DP, Nodine CF, Locher PJ. Global detection of symmetry. Percept Motor Skills 1977; 45: 1267–1273.

    PubMed  CAS  Google Scholar 

  3. Locher PJ, Nodine CF. The perceptual value of symmetry. Computers & Mathematics with Applications 1989; 17: 475–484.

    Article  Google Scholar 

  4. Wagemans J. Detection of visual symmetries. Spatial Vision 1995; 9: 9–32.

    PubMed  CAS  Google Scholar 

  5. Wagemans J. Characteristics and models of human symmetry detection. Trends in Cognitive Sciences 1997; 1: 346–352.

    Article  Google Scholar 

  6. Locher P, Wagemans J. The effects of element type and spatial grouping on symmetry detection. Perception 1993; 22: 565–587.

    PubMed  CAS  Google Scholar 

  7. Wagemans J, Van Gool L, Swinnen V, Van Horebeek J. Higher-order structure in regularity detection. Vision Res 1993; 33: 1067–1088.

    Article  PubMed  CAS  Google Scholar 

  8. Barlow HB, Reeves BC. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Res 1979; 19: 783–793.

    Article  PubMed  CAS  Google Scholar 

  9. Tapiovaara M. Ideal observer and absolute efficiency of detecting mirror symmetry in random images. J opt Soc Am A 1990; 7: 2245–2253.

    PubMed  CAS  Google Scholar 

  10. Wagemans J, Van Gool L, d'Ydewalle G. Detection of symmetry in tachistoscopically presented dot patterns: Effects of multiple axes and skewing. Percept Psychophys 1991; 50: 413–427.

    PubMed  CAS  Google Scholar 

  11. Wenderoth, P. The effects of dot pattern parameters and constraints on the relative salience of vertical bilateral symmetry. Vision Res 1996; 36: 2311–2320.

    Article  PubMed  CAS  Google Scholar 

  12. Treisman A. Properties, parts, and objects. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance (Vol. 1). New York, NY: Wiley, 1986: 35-1–35-70.

    Google Scholar 

  13. Baylis GC, Driver J. Parallel computation of symmetry but not repetition within visual shapes. Visual Cognition 1994; 1: 377–400.

    Google Scholar 

  14. Driver J, Baylis GC, Rafal RD. Preserved figure-ground segregation and symmetry perception in visual neglect. Nature 1992; 360: 73–75.

    Article  PubMed  CAS  Google Scholar 

  15. Bahnsen P. Eine Untersuchung über Symmetrie und Asymmetrie bei visuellen Wahrnehmungen. Z Psychol 1928; 108: 129–154.

    Google Scholar 

  16. Kanizsa G, Gerbino, W. Convexity and symmetry in figure-ground organization. In: Henle M (ed) Art and artefacts. New York: Springer, 1976: 23–32.

    Google Scholar 

  17. Julesz, B. Foundations of cyclopean perception. Chicago: University of Chicago Press, 1971.

    Google Scholar 

  18. Mach E. The analysis of sensations. (Originally published in German, 1886). New York: Dover, 1959.

    Google Scholar 

  19. Wagemans J, Van Gool L, d'Ydewalle G. Orientational effects and component processes in symmetry detection. Quart J Exp Psychol 1992; 44A: 475–508.

    Google Scholar 

  20. Wenderoth P. The salience of vertical symmetry. Perception 1994; 23: 221–236.

    PubMed  CAS  Google Scholar 

  21. Saarinen J. Detection of mirror symmetry in random dot patterns at different eccentricities. Vision Res 1988; 28: 755–759.

    Article  PubMed  CAS  Google Scholar 

  22. Corballis MC, Beale IL. The psychology of left and right. Hillsdale, NJ: Erlbaum, 1976.

    Google Scholar 

  23. Jenkins B. Component processes in the perception of bilaterally symmetric dot textures. Percept Psychophys 1983; 34: 433–440.

    PubMed  CAS  Google Scholar 

  24. Jenkins B. Orientational anisotropy in the human visual system. Percept Psychophys 1985; 37: 125–134.

    PubMed  CAS  Google Scholar 

  25. Appelle S. Perception and discrimination as a function of stimulus orientation: The ‘oblique effect’ in man and animals. Psychol Bull 1972; 78: 266–278.

    Article  PubMed  CAS  Google Scholar 

  26. Essock EA. The oblique effect of stimulus identification considered with respect to two classes of oblique effects. Perception 1980; 9: 37–46.

    PubMed  CAS  Google Scholar 

  27. Campbell FW, Kulikowski JJ, Levinson J. The effect of orientation on the visual resolution of gratings. J Physiol (Lond) 1966; 187: 427–436.

    CAS  Google Scholar 

  28. Mitchell DE, Freeman RD, Westheimer G. Effect of orientation on the modulation sensitivity for interference fringes on the retina. J opt Soc Am 1967; 57: 246–249.

    Article  PubMed  CAS  Google Scholar 

  29. Braitenberg V. Reading the structure of brains. Network 1990; 1: 1–11.

    Article  Google Scholar 

  30. Milner AD, Jeeves MA. A review of behavioral studies of agenesis of the corpus callosum. In: Russell IS, van Hof MW, Berlucchi G (eds) Structure and function of cerebral commisures. College Park, MD: University of Maryland Press, 1979: 428–448.

    Google Scholar 

  31. Herbert AM, Humphrey GK. Bilateral symmetry detection: Testing a ‘callosal’ hypo-thesis. Perception 1996; 25: 463–480.

    PubMed  CAS  Google Scholar 

  32. Bruce V, Morgan MJ. Violations of symmetry and repetition in visual patterns. Perception 1975; 4: 239–249.

    Google Scholar 

  33. Palmer SE, Hemenway K. Orientation and symmetry: Effects of multiple, rotational, and near symmetries. J Exp Psychol [Hum Percept Perf] 1978; 4: 691–702.

    Article  CAS  Google Scholar 

  34. Labonté F, Shapira Y, Cohen P, Faubert J. A model for global symmetry detection in dense images. Spatial Vision 1995; 9: 33–55.

    PubMed  Google Scholar 

  35. Pashler H. Coordinate frame for symmetry detection and object recognition. J Exp Psychol [Hum Percept Perf] 1990; 16: 150–163.

    Article  CAS  Google Scholar 

  36. Dakin SC, Watt RJ. Detection of bilateral symmetry using spatial filters. Spatial Vision 1994; 8: 393–413.

    PubMed  CAS  Google Scholar 

  37. Szlyk JP, Seiple W, Xie W. Symmetry discrimination in patients with retinitis pigmentosa. Vision Res 1995; 35: 1633–1640.

    Article  PubMed  CAS  Google Scholar 

  38. Newsome DA. Retinitis pigmentosa, Usher's syndrome, and other pigmentary retinopathies. In: Newsome DA (ed) Retinal dystrophies and degenerations. New York: Raven Press, 1988: 161–194.

    Google Scholar 

  39. Kilbride PE, Fishman M, Fishman GA, Hutman LP. Foveal cone pigment density difference and reflectance in retinitis pigmentosa. Arch Ophthal 1986; 104: 220–224.

    PubMed  CAS  Google Scholar 

  40. Marmor MF. Contrast sensitivity versus acuity in retinal disease. Br J Ophthal 1986; 70: 553–559.

    CAS  Google Scholar 

  41. Dagnelie G, Massof RW. Foveal cone involvement in retinitis pigmentosa progression assessed through psychophysical impulse response parameters. Invest Ophthal visual Sci 1993; 34: 243–255.

    CAS  Google Scholar 

  42. Flannery JG, Farber DB, Bird AC, Bok D. Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. Invest Ophthal visual Sci 1989; 30: 191–211.

    CAS  Google Scholar 

  43. Rovamo J, Virsu V. An estimation and application of the human cortical magnification factor. Exp Brain Res 1979; 37: 495–510.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagemans, J. Parallel visual processes in symmetry perception: Normality and pathology. Doc Ophthalmol 95, 359–370 (1998). https://doi.org/10.1023/A:1001868710536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001868710536

Navigation