Skip to main content
Log in

Molecular genetics of carbapenem antibiotic biosynthesis

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Carbapenems are potent β-lactam antibiotics with a broad spectrum of activity against both Gram positive and Gram negative bacteria. As naturally produced metabolites, they have been isolated from species of Streptomyces, Erwinia and Serratia. The latter two members of the Enterobacteriaceae have proved to be genetically amenable and a growing body of research on these organisms now exists concerning the genes responsible for carbapenem biosynthesis and the regulatory mechanisms controlling their expression. A cluster of nine carbapenem (car) genes has been identified on the chromosome of Erwinia carotovora. These genes encode the enzymes required for construction of carbapenem and the proteins responsible for a novel β-lactam resistance mechanism, conferring carbapenem immunity in the producing host. Although sharing no homology with the well known enzymes of penicillin biosynthesis, two of the encoded proteins are apparently similar to enzymes of the clavulanic acid biosynthetic pathway implying a common mechanism for construction of the β-lactam ring. In addition, a transcriptional activator is encoded as the first gene of the carbapenem cluster and this allows positive expression of the remaining downstream genes in response to a quorum sensing, N-acyl homoserine lactone, signalling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmer BMM, Van Reeuwijk J, Timmers CD, Valentine PJ & Heffron F (1998) Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bact. 180: 1185–1193

    Google Scholar 

  • Albers-Schonberg G, Arisen BH, Hensens OD, Hirshfield J, Hoogsteen K, Kaczka EA, Rhodes RE, Kahan JS, Kahan FM, Ratcliffe RW, Walton E. Ruswinkle LJ, Morin RB & Christensen BG (1978) Structure and absolute configuration of thienamycin. J. Am. Chem. Soc. 100: 6491–6499

    Google Scholar 

  • Baggaley KH, Brown AG & Schofield CJ (1997) Chemistry and biosynthesis of clavulanic acid and other clavams. Nat. Prod. Rep. 14: 309–333

    Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB & Williams P (1992a) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288: 997–1004

    Google Scholar 

  • Bainton NJ, Bycroft BW, Chhabra SR, Stead P, Gledhill L, Hill PJ, Rees CED, Winson MK, Salmond GPC, Stewart GSAB & Williams P (1992b) A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116: 87–91

    Google Scholar 

  • Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD & Reading C (1976) Naturally-occurring β-lactamase inhibitors with antibacterial activity. J. Antibiotics 29: 668–669

    Google Scholar 

  • Bycroft BW, Maslen C, Box SJ, Brown A & Tyler JW (1988) The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J. Antibiotics 41: 1231–1242

    Google Scholar 

  • Chhabra SR, Stead P, Bainton NJ, Salmond, GPC, Stewart, GSAB, Williams, P and Bycroft, BW (1993) Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J. Antibiotics. 46: 441–454

    Google Scholar 

  • Coulton, S & Hunt, E (1996) Recent advances in the chemistry and biology of carbapenem antibiotics. Prog. Med. Chem. 33: 99–145

    Google Scholar 

  • Cox, ARJ, Thomson, NR, Bycroft, BW, Stewart, GSAB, Williams, P & Salmond, GPC (1998) A pheromone-independent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens. Microbiol. 144: 201–209

    Google Scholar 

  • Distler, J, Ebert, A, Mansouri, K, Pissowotski, K, Stockman, M & Piepersberg, W (1987) Gene cluster for streptomycin biosynthesis in Streptomyces griseus — nucleotide sequence of three genes and analysis of transcriptional activity. Nuc. Acids Res. 15: 8041–8056

    Google Scholar 

  • Elson, SW, Baggaley, KH, Fulston, M, Nicholson, NH, Tyler, JW, Edwards, J, Holms, H, Hamilton, I & Mousdale, DM (1993a) Two novel arginine derivatives from a mutant of Streptomyces clavuligerus. J. Chem. Soc. Chem. Comm. 15: 1211–1212

    Google Scholar 

  • Elson, SW, Baggaley, KH, Davison, M, Fulston, M, Nicholson, NH, Risbridger, GD & Tyler, JW (1993b) The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway. J. Chem. Soc. Chem. Comm. 15: 1212–1214

    Google Scholar 

  • Fuqua, WC, Winans, SC & Greenberg, EP (1994) Quorum sensing in bacteria — the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bact. 176: 269–275

    Google Scholar 

  • Fuqua, WC, Winans, SC & Greenberg, EP (1996) Census and consensus in bacterial ecosystems — the LuxR-LuxI family of quorum-sensing transcriptional regulators. Ann. Rev. Microbiol. 50: 727–751

    Google Scholar 

  • Hodgson, JE, Fosberry, AP, Rawlinson, NS, Ross, HNM, Neal, RJ, Arnell, JC, Earl, AJ & Lawlor, EJ (1995) Clavulanic acid biosynthesis in Streptomyces clavuligerus — gene cloning and characterisation. Gene 166: 49–55

    Google Scholar 

  • Holden, MTG, McGowan, SJ, Bycroft, BW, Stewart, GSAB, Williams, P & Salmond, GPC (1998) Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiol. 144: 1495–1508

    Google Scholar 

  • Jones, S, Yu, B, Bainton, NJ, Birdsall, M, Bycroft, BW, Chhabra, SR, Cox, AJR, Golby, P, Reeves, PJ, Stephens, S, Winson, MK, Salmond, GPC, Stewart, GSAB & Williams, P (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa EMBO. J. 12: 2477–2482

    Google Scholar 

  • Kahan, FM, Kropp, H, Sundelof, JG & Birnbaum, J (1983) Thienamycin: development of imipenem-cilastatin. J. Antimicrob. Chemother. 12:D1-D35

    Google Scholar 

  • Kintaka, K, Harada, S, Ono, H & Okazaki, H (1985) Production of a carbapenem antibiotic by a spiral bacterium, Azospirillum sp. J. Takeda Res. Lab. 44: 17–21

    Google Scholar 

  • Kropp, H, Sundelof, JG, Kahah, JS, Kahan, FM & Birnbaum, J (1980) MK0787 (N-formimidoyl thienamycin): Evaluation of in vitro and in vivo activities. Antimicrob. Agents Chemother. 17: 993–1000

    Google Scholar 

  • Li, R, Wang, Y & Zeng, Y (1993) Cloning of the thienamycin biosynthetase genes from Streptomyces cattleya. Chin. J. Biotechnol. 9: 1–7

    Google Scholar 

  • Libby, SJ, Goebel, W, Ludwig, A, Buchmeier, N, Bowe, N, Fang, FC, Guiney, DG, Songer, JG & Heffron, F (1994) A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl. Acad. Sci. 91: 489–193

    Google Scholar 

  • McGowan, S, Sebaihia, M, Jones, S, Yu, B, Bainton, N, Chan, PF, Bycroft, B, Stewart, GSAB, Williams, P & Salmond, GPC (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional regulator. Microbiol. 141: 541–550

    Google Scholar 

  • McGowan, SJ, Sebaihia, M, Porter, LE, Stewart, GSAB, Williams, P, Bycroft, BW & Salmond, GPC (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel β-lactam biosynthesis pathway. Mol. Microbiol. 22: 415–426

    Google Scholar 

  • McGowan, SJ, Sebaihia, M, O'Leary, S, Hardie, KR, Williams, P, Stewart, GSAB, Bycroft, BW & Salmond, GPC (1997) Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel β-lactam resistance mechanism. Mol. Microbiol. 26: 545–556

    Google Scholar 

  • McGowan, SJ, Bycroft, BW & Salmond, GPC (1998) Bacterial production of carbapenems and clavams: evolution of β-lactam antibiotic pathways. Trends Microbiol. 6: 203–208

    Google Scholar 

  • Meighen, EA (1991) Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55: 123–142

    Google Scholar 

  • More, MI, Finger, LD, Stryker, JL, Fuqua, C, Eberhard, A & Winans, SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science. 272: 1655–1658

    Google Scholar 

  • Nakata, K, Horinouchi, S & Beppu, T (1989) Cloning and characterization of the carbapenem biosynthetic genes from Streptomyces fulvoviridis. FEMS Microbiol. Letts. 57: 51–56

    Google Scholar 

  • Neu, HC (1994) Why carbapenems? Cum Opin. Inf. Dis. 7:(suppl. 1) S3-S10

    Google Scholar 

  • Parker, WL, Rathnum, ML, Wells, JS, Trejo, WH, Principe, PA & Sykes, RB (1982) SQ27860, a simple carbapenem produced by species of Serratia and Erwinia. J. Antibiotics 35: 653–660

    Google Scholar 

  • Robson, ND, Cox, ARJ, McGowan, SJ, Bycroft, BW & Salmond, GPC (1997) Bacterial N-acyl-homoserine-lactone-dependent signalling and its potential biotechnological applications. Trends Biotechnol. 15:458–164

    Google Scholar 

  • Salmond, GPC, Bycroft, BW, Stewart, GSAB & Williams, P (1995) The bacterial ‘enigma’ cracking the code of cell-cell communication. Mol. Microbiol. 16: 615–624

    Google Scholar 

  • Schaefer, AL, Val, DL, Hanzelka, BL, Cronan, JE & Greenberg, EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. 93: 9505–9509

    Google Scholar 

  • Swift, S, Winson, MK, Chan, PF, Bainton, NJ, Birdsall, M, Reeves, PJ, Rees, CED, Chhabra, SR, Hill, PJ, Throup, JP, Bycroft, BW, Salmond, GPC, Williams, P & Stewart, GSAB (1993) A novel strategy for the isolation of luxI homlogues: evidence for the widespread distribution of a luxR:luxI superfamily in enteric bacteria. Mol. Microbiol. 10: 511–520

    Google Scholar 

  • Thomson, NR, Cox, A, Bycroft, B W, Stewart, GSAB, Williams, P & Salmond, GPC (1997) The Rap and Hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol. Microbiol. 26: 531–544

    Google Scholar 

  • Williams, P, Bainton, NJ, Swift, S, Chhabra, SR, Winson, MK, Stewart, GSAB, Salmond, GPC & Bycroft, BW (1992) Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol. Letts. 100: 161–168

    Google Scholar 

  • Williamson, JM, Inamine, E, Wilson, KE, Douglas, AW, Liesch, JM & Albers-Schonberg, G (1985) Biosynthesis of the β-lactam antibiotic, thienamycin, by Streptomyces cattleya. J. Biol. Chem. 260: 4637–4647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. C. Salmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGowan, S.J., Holden, M.T.G., Bycroft, B.W. et al. Molecular genetics of carbapenem antibiotic biosynthesis. Antonie Van Leeuwenhoek 75, 135–141 (1999). https://doi.org/10.1023/A:1001768428383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001768428383

Navigation