Skip to main content
Log in

Free Surface of a High Speed Capillary Jet

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A free surface shape of a viscous liquid jet is investigated at large Reynolds and Weber numbers. The jet is ejected into a vacuum from a cylindrical nozzle with a flat exterior surface. The liquid is completely wetting the nozzle material (zero contact angle). Free jet surface is non-cylindrical near the nozzle. There is a smooth connection between the flat external surface of the nozzle and the cylindrical surface of the jet away from the nozzle. The size of the connection region is estimated by means of the boundary layer technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilgen, E., Expansion — contraction behavior of dilute polymer solutions. Canad. J. Chem. Engrg. 49 (1971) 732–736.

    Google Scholar 

  2. Debler, W. and Yu, D., The break-up of laminar liquid jets. Proc. Roy. Soc. London A 415(1848) (1988) 107–119.

    Google Scholar 

  3. Duda, J.L. and Vrentas, J.S., Fluid mechanics of laminar liquid jets. Chem. Engrg. Sci. 22 (1967) 855–869.

    Google Scholar 

  4. Gavis, J. and Modan, M., Expansion and contraction of jets of Newtonian liquids in air: Effect of tube length. Phys. Fluids 10 (1967) 487–497.

    Google Scholar 

  5. Gear, R.L., Keentok, M., Milthorpe, J.F. and Tanner, R.I., The shape of low Reynolds number jets. Phys. Fluids 26 (1983) 7–9.

    Google Scholar 

  6. Georgiou, G.S., Papanastasiou, T.C. and Wilkes, J.O., Laminar Newtonian jets at high Reynolds number and high surface tension. AIChE J. 34 (1988) 1559–1562.

    Google Scholar 

  7. Goldstein, S., Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Cambridge Phil. Soc. 26 (1930) 1.

    Google Scholar 

  8. Goren, S.L., Development of the boundary layer at a free surface from a uniform shear flow. J. Fluid Mech. 25 (1966) 87–95.

    Google Scholar 

  9. Goren, S.L. and Wronski, S., The shape of low-speed capillary jets of Newtonian liquid. J. Fluid Mech. 25 (1966) 185–191.

    Google Scholar 

  10. Harmon, D.B., Drop sizes from low speed jets. J. Franklin Inst. 259 (1955) 519–522.

    Google Scholar 

  11. Hill, G.A. and Chenier, C.L., Die swell experiments for Newtonian fluids. Canad. J. Chem. Engrg. 62 (1984) 40–45.

    Google Scholar 

  12. Horfall, F., A theoretical treatment of die swell in a Newtonian liquid. Polymer 14 (1973) 262–266.

    Google Scholar 

  13. Lienhard, J.H., Effect of gravity and surface tension upon liquid jets leaving Poiseuille tubes. Trans. ASME, J. Basic Engrg. 90 (1968) 262–268.

    Google Scholar 

  14. Middleman, S., Profile relaxation in Newtonian jets. Ind. Engrg. Chem. Fundamentals 3 (1964) 118–122.

    Google Scholar 

  15. Middleman, S. and Gavis, J., Expansion and contraction of capillary jets of Newtonian fluids. Phys. Fluids 4 (1961) 353–359. Errata, Phys. Fluids 4 (1961) 1450.

    Google Scholar 

  16. Miyake, Y., Mukai, E. and Iemoto, Y., On a two-dimensional laminar liquid jet. Bull. JSME 22(172) (1979) 1382–1389.

    Google Scholar 

  17. Miyake, Y. and Yamaji, C., On the axi-symmetric laminar flow of liquid jet. Tech. Rep. Osaka Univ. 26 (1976) 527–537.

    Google Scholar 

  18. Nickel, R.E., Tanner, R.I. and Caswell, B., The solution of viscous incompressible jet and free surface flows using finite element methods. J. Fluid Mech. 65 (1974) 189–206.

    Google Scholar 

  19. Omodei, B.J., On the die swell of an axisymmetric Newtonian jet. Comput. Fluids 8 (1980) 275–289.

    Google Scholar 

  20. Philippe, C. and Dumargue, P., Étude de l'établissment d'un jet liquide laminaire émergeant d'une conduit cylindrique vertical semi-infinite et soumis a l'influence de la gravité. A. Angew. Math. Phys. (ZAMP) 42 (1991) 227–247.

    Google Scholar 

  21. Philippe, C. and Froehly, C., Measures de vitesses dans un écoulement laminaire axisymétrique par une technique optique de visualisation en lumière cohèrente. Z. Angew. Math. Phys. (ZAMP) 34 (1983) 137–153.

    Google Scholar 

  22. Reddy, K.R. and Tanner, R.I., Finite element solution of viscous jet flows with surface tension. Comput. Fluids 6 (1978) 83–91.

    Google Scholar 

  23. Scriven, L.E. and Pigford, R.L., Fluid dynamics and diffusion calculations for laminar liquid jets. AIChE J. 5 (1959) 397.

    Google Scholar 

  24. Slattery, J.C. and Schowalter, W.R., Effect of surface tension in measurement of the average normal stress at the exit of a capillary tube through an analysis of the capillary jet. J. Appl. Polym. Sci. 8 (1964) 1941–1947.

    Google Scholar 

  25. Talaykova, N.B. and Labeish, V., private communication.

  26. Tillett, J.P.K., On the laminar flow in a free jet of liquid at high Reynolds numbers. J. Fluid Mech. 32 (1968) 273–292.

    Google Scholar 

  27. Vrentas, J.S. and Vrentas, C.M., Inertia and surface tension effects in Newtonian liquid jets. Internat. J. Multiphase Flow 8 (1982) 559–564.

    Google Scholar 

  28. Wilson, D.E., A similarity solution for the axisymmetric viscous-gravity jet. Phys. Fluids 29 (1986) 632–639.

    Google Scholar 

  29. Yamaguchi, R. and Takahashi, K., Flow pattern near the outlet of a straight long circular tube. 1. Experimental study of velocity profile. Bull. JSME 23 (1980) 1798–1805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesnokov, Y.G., Razumovskij, N.A. Free Surface of a High Speed Capillary Jet. Flow, Turbulence and Combustion 59, 77–88 (1997). https://doi.org/10.1023/A:1001154710893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001154710893

Navigation