Skip to main content
Log in

Electrostatic instability of the surface of a volume charged jet of dielectric liquid moving relative to the surrounding medium

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The laws of implementation of electrostatic instability of the surface of a cylindrical volume charged jet of an ideal incompressible dielectric liquid moving relative to the ideal incompressible dielectric medium and the stability of bending-deformation capillary waves developed on the surface are investigated analytically. It is found that there are thresholds for the critical conditions of implementation of the instability with respect to the jet velocity relative to the medium (Weber number) and with respect to the electric space charge (relative to the ratio of the electrostatic pressure on the jet surface to the Laplace pressure). The critical analytic dependence between these dimensionless parameters is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review,” J. Aerosol Sci. 25, No. 6, 1021–1035 (1994).

    Article  ADS  Google Scholar 

  2. A. Jaworek and A. Krupa, “Classification of the Modes of EHD Spraying,” J. Aerosol Sci. 30, No. 7, 873–893 (1999).

    Article  ADS  Google Scholar 

  3. O.V. Kim and P.F. Dunn, “Control Production of Droplets by In–Flight Electrospraying,” Langmuir 26, 15807–15813 (2010).

    Article  Google Scholar 

  4. A.I. Grigor’ev, “Electrostatic Instability of a Strongly Charged Jet of an Electrically Conducting Liquid,” Zh. Tekhn. Fiz. 79, No. 4, 35–46 (2009).

    Google Scholar 

  5. A.I. Grigor’ev and S.O. Shiryaeva, “On Electrostatic Instability of a Space-Charged Jet of Dielectric Liquid,” Surf. Engin. Appl. Electrochem. 45, No. 6, 465–470 (2009).

    Article  Google Scholar 

  6. A.I. Grigor’ev, S.O. Shiryaeva, N.A. Petrushov, and M.V. Volkova, “Instability of the Lateral Surface of Strongly Charged Jets in a Collinear Flow of Material Environment,” Surf. Engin. Appl. Electrochem. 46, No. 3, 218–222 (2010).

    Article  Google Scholar 

  7. S.O. Shiryaeva, “Electrostatic Instability of the Lateral Surface of a Jet of Viscous Liquid of Finite Conductivity in a Collinear Electrostatic Field,” Zh. Tekhn. Fiz. 81, No. 6, 36–41 (2011).

    Google Scholar 

  8. L. Tonks, “A theory of Liquid Surface Rupture by Uniform Electric Field,” Phys. Rev. 48, 562–568 (1935).

    Article  ADS  Google Scholar 

  9. C.T. Wilson and G.I. Taylor, “The Bursting of Soap-Bubbles in a Uniform Electric Field,” Proc. Cambridge Phil. Soc. Mat. Phys. Sci. 22, No. 5, 728–730 (1925).

    Article  ADS  Google Scholar 

  10. N.M. Zubarev, “Formation of Conical Spikes on the Liquid Metal Surface in an Electric Field,” Pis’ma v Zh. Eksper. Teoret. Fiz. 73, No. 10, 613–617 (2001).

    Google Scholar 

  11. Ya.I. Frenkel, “On the Tonks Theory of Liquid Surface Rupture by a Uniform Electric Field in Vacuum,” Zh. Eksper. Teoret. Fiz. 6, No. 4, 348–350 (1936).

    MATH  Google Scholar 

  12. G.I. Taylor and A.D. McEwan, “The Stability of a Horizontal Fluid Interface in a Vertical Electric Field,” J. Fluid Mech. 22, No. 1, 1–15 (1965).

    Article  ADS  MATH  Google Scholar 

  13. G.A. Ostroumov, Interaction of Electric and Hydrodynamic Fields (Nauka,Moscow, 1979) [in Russian].

    Google Scholar 

  14. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (3rd Ed.) (Pergamon Press, 1971; Nauka,Moscow, 1973).

    MATH  Google Scholar 

  15. L.D. Landau and E.M. Lifshitz, Fluid Mechanics (2nd Ed.) (Pergamon Press, 1987; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  16. Ali H. Nayfeh, Perturbation Methods (Wiley, 1973; Mir, Moscow, 1976).

    MATH  Google Scholar 

  17. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards,Washington, D.C., 1964; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  18. I.E. Tamm, Fundamentals of the Electricity Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  19. Yu.P. Raizer, Physics of Gas Discharge (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  20. Rayleigh (J.W. Strutt), “On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” Phil. Mag. 14, 184–186 (1882).

    Article  Google Scholar 

  21. C.D. Hendrics and J.M. Schneider, “Stability of Conducting Droplet under the Influence of Surface Tension and Electrostatic Forces,” J. Amer. Phys. 1, No. 6, 450–453 (1963).

    Article  ADS  MATH  Google Scholar 

  22. D. Duft, T. Achtzehn, R. Muller, B.A. Huber, and T. Leisner, “Rayleigh Jets from Levitated Microdroplets,” Nature 421, 128 (2003).

    Article  ADS  Google Scholar 

  23. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960; Nauka, Moscow, 1975).

    MATH  Google Scholar 

  24. T.J. O’Konski and H.T. Thacher, “The Distortion of Aerosol Droplets by an Electric Field,” J. Phys. Chem. 57, 955–958 (1953).

    Article  Google Scholar 

  25. K.J. Cheng, “Capillary Oscillations of Drop in an Electric Field,” Physics Lett. A 112, No. 8, 392–396 (1985).

    Article  ADS  Google Scholar 

  26. G.I. Taylor, “Disintegration of Water Drops in an Electric Field,” Proc. Roy. Soc. London. Ser. A 280, 383–397 (1964).

    Article  ADS  MATH  Google Scholar 

  27. V.G. Levich, Physicochemical Hydrodynamics (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  28. J. Eggers and E. Willermaux, “Physics of Liquid Jets,” Rep. Prog. Phys. 71, 1–79 (2008).

    Article  Google Scholar 

  29. J.W. Hoyt and G.I. Taylor, “Waves on Water Jets,” J. Fluid Mech. 83, 119–127 (1977).

    Article  ADS  Google Scholar 

  30. Ya.Yu. Akhadov, Dielectric Parameters of Pure Liquids (MoscowAviation InstitutePress, Moscow, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Grigor’ev.

Additional information

Original Russian Text © A.I. Grigor’ev, G.E. Mikheev, S.O. Shiryaeva, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, No. 5, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, A.I., Mikheev, G.E. & Shiryaeva, S.O. Electrostatic instability of the surface of a volume charged jet of dielectric liquid moving relative to the surrounding medium. Fluid Dyn 52, 599–609 (2017). https://doi.org/10.1134/S0015462817050015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817050015

Keywords

Navigation