Skip to main content
Log in

Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The diversity of bacteria isolated from creosote- contaminated soils in the United States, Norway, and Germany was determined by comparing their ability to degrade polycyclic aromatic hydrocarbons (PAHs), their phospholipid ester-linked fatty acid (GC-FAME) profiles, sole carbon source utilization patterns (Biolog™ assays (Use of trade names or specific products does not imply endorsement by the U.S. EPA.), and 16S rRNA sequences. Bacteria were initially obtained by enrichment with phenanthrene and fluoranthene. Many were capable of degrading a broad range of the PAHs found in creosote. Phenanthrene- or fluoranthene- degraders were abundant in most of the soils tested. Several of the fluoranthene-degrading isolates clustered with Sphingomonas (formerly Pseudomonas) paucimobilis strain EPA505 in the GC-FAME and Biolog™ analyses and three of the isolates examined by 16S rRNA sequence comparisons showed a close relationship with Sphingomonas. In addition, the Sphingomonas strains showed the most extensive degradation of 4- & 5-ring PAHs in creosote. Burkholderia cepacia strains isolated on phenanthrene from PAH-contaminated soils had limited ability to attack higher molecular weight PAHs either individually or in creosote. Thus, PAH degradation capabilities appeared to be associated with members of certain taxa, independent of the origin of the soils from which the bacteria were isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer JE & Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on the degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54: 1649-1655

    Google Scholar 

  • Berg JD, Nesgard B, Gundersen R, Lorentsen A & Bennett TE (1993) Washing and slurry phase biotreatment of creosote-contaminated soil. In: R. Hinchee (Ed) Proceedings 2nd International Symposium on In Situ and On-Site Bioreclamation (pp 489-495) San Diego, CA

  • Bochner BR (1989) "Breathprints" at the microbial level: An automated redox-based technology quickly identifies bacteria according to their metabolic capabilities. ASM News. 55: 536-539

    Google Scholar 

  • Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S & Christen R (1995) Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl. Environ. Microbiol. 61: 3400-3406

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3: 351-368

    Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4: 331-338

    Google Scholar 

  • Chan E-C, Kuo J, Lin H-P & Mou DG (1991) Stimulation of n-alkane conversion to dicarboxylic acid by organic-solvent-and detergent-treated microbes. Appl. Microbiol. Biotechnol. 34: 772-777

    Google Scholar 

  • Difco Laboratories (1984) Difco manual: Dehydrated culture media and reagents for microbiology. (p 184) Difco Laboratories, Inc. Detroit, MI

    Google Scholar 

  • Dorsch M & Stackebrandt E (1992) Some modifications in the procedure for direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Methods 16: 271-279

    Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC & Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Internat. J. Systematic Bacteriol. 45: 116-123

    Google Scholar 

  • Focht JM & Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135-1141

    Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB & White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep surface. Appl. Environ. Microbiol. 61: 1917-1922

    Google Scholar 

  • García-Valdés E, Cozar E, Rotger R, Lalucat J & Ursing J (1988) New naphthalene-degrading marine Pseudomonas strains. Appl. Environ. Microbiol. 54: 2478-2485

    Google Scholar 

  • Govindaswami M, Schmidt TM, White DC & Loper JC (1993) Phylogenetic analysis of a bacterial aerobic degrader of azo dyes. J. Bacteriol. 175: 6062-6066

    Google Scholar 

  • Grifoll M, Selifonov SA, Gatlin CV & Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61: 3711-3723

    Google Scholar 

  • Grosser RJ, Warshawsky D & Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl. Environ. Microbiol. 57: 3462-3469

    Google Scholar 

  • Guckert JB & White DC (1986) Phospholipid, ester-linked fatty acid analysis in microbial ecology. In: Mecusar F & Gantar M (Eds) Perspectives in Microbial Ecology (pp 455-459) Proceedings of the 4th International Symposium on Microbial Ecology. Slovene Soc. for Microbiol., Ljubljana

    Google Scholar 

  • Guerin WF & Jones GE (1989) Estuarine ecology of phenanthrene-degrading bacteria. Estuarine Coastal Shelf Sci. 29: 115-130

    Google Scholar 

  • Heitkamp MA & Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612-1614

    Google Scholar 

  • Ho Y & Pritchard PH (1995) Classification of PAH-degrading bacteria by PAH utilization patterns and the comparison of metabolic products. Proceed. 8th International IGT Symposium on Gas, Oil, and Environmental Biotechnology, December 11-13, Colorado Springs, CO

  • Jacobs D (1990) SAS/GRAPH software and numerical taxonomy. In: Proceedings of the 15th Annual Users Group Conference (pp 1413-1418). SAS Institute, Inc., Cary, NC

    Google Scholar 

  • Karlson U, Rojo F, Elsas JDV & Moore E (1996) Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas. System. Appl. Microbiol. (in press)

  • Kastner M, Breuer-Jammali M & Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl. Microbiol. Biotechnol. 41: 267-273

    Google Scholar 

  • Kelley I & Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J. Ind. Microbiol. 7: 19-26

    Google Scholar 

  • Kiyohara H, Nagao K & Yana K (1981) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol. 43: 454-457

    Google Scholar 

  • Komukai S, Iwabuchi T, Ogawa H, Yamasoto K & Harayama S (1995) Proceed, Pseudomonas 95 Conf., Tsukuba City, Japan (p 141)

  • Krieger J (1992) Technique identifies bacteria that degrade wastes. Chemical and Engineering News, July 27, p. 36

  • Laha S & Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25: 1920-1930

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E & Goodfellow M (Eds) Nucleic Acid Techniques in Bacterial Systematics (p 115-147). John Wiley & Sons, Chichester

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML & Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82: 6955-6959

    Google Scholar 

  • Lantz SE, Lin J-E, Mueller JG & Pritchard PH (1995) Effects of surfactants on fluoranthene mineralization by Sphingomonas paucimobilis strain EPA505. In: Hinchee RE, Vogel cm, Brockman FJ (Eds) Microbial Processes for Bioremediation (pp 7-14). Battelle Press, Columbus, OH

    Google Scholar 

  • Lantz SE, Montogomery MT, Schultz WW, Pritchard PH, Spargo BJ, & Mueller JG (1996) Constituents of organic wood preservatives that inhibit the fluoranthene-degrading activity of Sphingomonas paucimobilis strain EPA 505. Submitted to Environ Sci Tech.

  • Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbees R, Macke TJ, Marsh TL & Woese CR (1993) Nucleic Acids Res. 21: 3021-3023

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, NJ. 179 pp.

    Google Scholar 

  • Menn F-M, Applegate BM & Sayler GS (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol. 59: 1938-1942

    Google Scholar 

  • MIDI, Inc. (1993) Microbial identification system operating manual. Version 4. MIDI, Inc., Newark, NJ.

    Google Scholar 

  • Moore ERB, Wittich R-M, Fortnagel P & Timmis KN (1993) 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo-p-dioxin-degrading isolate within the new genus Sphingomonas. Lett. Appl. Microbiol. 17: 115-118

    Google Scholar 

  • Mueller JG, Chapman PJ & Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55: 3085-3090

    Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO & Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079-1086

    Google Scholar 

  • Mueller JG, Lantz SE, Blattmann BO & Chapman PJ (1991a) Benchscale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: Solid-phase bioremediation. Environ. Sci. Technol. 25: 1045-105

    Google Scholar 

  • ____ (1991b) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: Slurry-phase bioremediation. Environ. Sci. Technol. 25: 1055-1061

    Google Scholar 

  • Mueller JG, Resnick SM, Shelton ME, & Pritchard PH (1992) Effect of inoculation of the biodegradation of weathered Prudhoe Bay crude oil. J. Indust. Microbiol. 10: 95-105

    Google Scholar 

  • Mueller JG, Lantz SE, Colvin RJ, Ross D, Middaugh DP & Pritchard PH (1993) Strategy using bioreactors and specially-selected microorganisms for bioremediation of ground water contaminated with creosote and pentachlorophenol. Environ. Sci. Technol. 27: 691-698

    Google Scholar 

  • Mueller JG, Lantz SE, Devereux R, Berg JD & Pritchard PH (1994) Studies on the microbial ecology of PAH biodegradation. In: Hinchee RE, Leeson A, Semprini L & Ong SK (Eds) Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds (pp 218-230) Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Mueller JG, Cerniglia CE & Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford R & Crawford D (Eds) Bioremediation: Principles and Applications. Chapter 5. Cambridge University Press

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR & Stahl DA (1986) Microbial ecology and evolution: A ribosomal RNA approach. Annu. Rev. Microbiol. 40: 57-263

    Google Scholar 

  • Okpokwasili GC, Somerville CC, Grimes DJ & Colwell RR (1986) Plasmid-associated phenanthrene degradation by Chesapeake Bay sediment bacteria. A. Colloq. Inst. Fran. Rech. Exploit. Mer 3: 601-610

    Google Scholar 

  • Page AL, Miller RH & Keeney DR (1982) Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd ed. American Society of Agronomy, Madison, WI, 1159 pp

    Google Scholar 

  • Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Trüper HG, Dworkon M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd ed. (pp 3071-3085). Springer-Verlag, New York

    Google Scholar 

  • Palleroni NJ, Kunisawa R, Contpoulou R & Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23: 333-339

    Google Scholar 

  • Petrasek AC, IJ Kugelman, BM Austern, TA Pressley, LA Winslow & Wise RH (1983) Fate of toxic organic compounds in wastewater treatment plants. Journal WPCF 55: 1286-1296

    Google Scholar 

  • Phillips I (1977) Pseudomonas paucimobilis, new species isolated from human clinical specimens in the hospital environment and other sources. Int. J. Syst. Bact. 27: 133-146

    Google Scholar 

  • Pritchard PH, Lantz SE, Lin J-E & Mueller JG (1994) Metabolic and ecological factors affecting the bioremediation of PAH-and creosote-contaminated soil and water. In: U.S. EPA Annual Symposium on Bioremediation of Hazardous Wastes: Research, Development and Field Evaluations. San Francisco, CA, June 28-30 (pp 129-138). EPA/600/R-94/075

  • Pritchard PH, Mueller JG, Lantz SE & Santavy DL (1995) The potential importance of biodiversity in environmental biotechnology applications: Bioremediation of PAH-contaminated soils and sediments, Chapter 9. In: Allsopp D, Hawksworth EL & Colwell RR (Eds) Microbial Diversity and Ecosystem Function. CAB International

  • Resnick SM & Chapman PJ (1994) Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation. 5: 47-54

    Google Scholar 

  • Schocken MJ & Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol. 48: 10-16

    Google Scholar 

  • Senoo K, Nishiyama M, Wada H & Matsumoto S (1992) Differences in dynamics between indigenous and inoculated Sphingomonas paucimobilis strain SS86 in soils. FEMS Microbial Ecol. 86: 311-320

    Google Scholar 

  • Sneath PHA & Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Co., San Francisco, CA 573 pp.

    Google Scholar 

  • Stackebrandt E, Murray RGE & Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives." Int. J. Syst. Bacteriol. 3: 321-325

    Google Scholar 

  • Takeuchi M, Sawada H, Oyaizu H & Yokota A (1994) Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 44: 308-314

    Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60:258-263

    Google Scholar 

  • Tonso NL, Matheson VG & Holben WE (1995) Polyphasic characterization of a suite of bacterial isolates capable of degrading 2,4-D. Microbial Ecology 30: 3-24

    Google Scholar 

  • van Bruggen AHC, Jochimsen KN, Steinberger EM, Segers P & Gillis M (1993) Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int. J. Syst. Bacteriol. 43: 1-7

    Google Scholar 

  • Vestal JR & White DC (1989) Lipid analysis in microbial ecology. BioScience. 39: 535-541

    Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671-676

    Google Scholar 

  • Weisburg WG, Barnes SM, Pelleteir DA & Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703

    Google Scholar 

  • Weissenfels WD, Beyer M & Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479-484

    Google Scholar 

  • West PA, Okpokwasili GC, Brayton PR, Grimes DJ & Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol. 48: 988-993

    Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T & Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34: 99-119

    Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T & Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiol. Immunol. 36: 1251-1275

    Google Scholar 

  • Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: A molecular approach. In: Setlow JK (Ed) Genetic Engineering: Principles and Methods, Vol. 13 (pp 183-203). Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, J., Devereux, R., Santavy, D. et al. Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71, 329–343 (1997). https://doi.org/10.1023/A:1000277008064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000277008064

Navigation