Skip to main content
Log in

Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In small fuel cell applications, it is desirable to take care of the management of reactants, water and heat by passive means in order to minimize parasitic losses. A polymer electrolyte membrane fuel cell, in which air flow on the cathode was driven by free convection, was studied by experimental and modelling methods. The cathode side of the cell had straight vertical channels with their ends open to the ambient air. A two-dimensional, isothermal and steady state model was developed for the cathode side to identify the limiting processes of mass transport. The modelled domain consists of the cathode gas channel and the gas diffusion layer. Experimental data from current distribution measurements were used to provide boundary conditions for oxygen consumption and water production. The model results indicate that at the cell temperature of 40 °C the performance of the cell was limited by water removal. At the cell temperature of 60 °C, the current distribution was determined by the partial pressure of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Heinzel, C. Hebling, M. Müller, M. Zedda and C. Müller, J. Power Sources 105 (2002) 250.

    Google Scholar 

  2. J.P. Meyers and H.L. Maynard, J. Power Sources 109 (2002) 76.

    Google Scholar 

  3. C.K. Dyer, J. Power Sources 106 (2002) 31.

    Google Scholar 

  4. J. Vanhanen, ‘On the performance improvements of small-scale photovoltaic-hydrogen systems’, Dissertation (Helsinki University of Technology, Espoo, 1996).

    Google Scholar 

  5. T.B. Atwater, P.J. Cygan and C.L. Fee, J. Power Sources 91 (2000) 27.

    Google Scholar 

  6. J.M. Moore, B.J. Lakeman and G.O. Mepsted, J. Power Sources 106 (2002) 16.

    Google Scholar 

  7. J.W. Raadschelders and T. Jansen, J. Power Sources 96 (2001) 160.

    Google Scholar 

  8. D. Chu, R. Jiang, K. Gardner, R. Jacobs, J. Schmidt, T. Quakenbush and J. Stephens, J. Power Sources 96 (2001) 174.

    Google Scholar 

  9. D.M. Bernardi and M. Verbrugge, AIChE J. 37 (1991) 1151.

    Google Scholar 

  10. D.M. Bernardi and M. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.

    Google Scholar 

  11. T.E. Springer, T.A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Google Scholar 

  12. T.E. Springer, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 3513.

    Google Scholar 

  13. T.F. Fuller and J. Newman, J. Electrohem. Soc. 140 (1993) 1218.

    Google Scholar 

  14. T.V. Nguyen and R.E. White, J. Electrochem. Soc. 140 (1993) 2178.

    Google Scholar 

  15. V. Gurau, H. Liu and S. Kakac¸, AIChE J. 44 (1998) 2410.

    Google Scholar 

  16. S. Um, C-Y. Wang and K-S. Chen, J. Electrochem. Soc. 147 (2000) 4485.

    Google Scholar 

  17. K. Dannenberg, P. Ekdunge and G. Lindbergh, J. Appl. Electrochem. 30 (2000) 1377.

    Google Scholar 

  18. Z-H. Wang, C-Y. Wang and K-S. Chen, J. Power Sources 94 (2001) 40.

    Google Scholar 

  19. D. Natarajan and T.V. Nguyen, J. Electrochem. Soc. 148 (2001) A1324.

    Google Scholar 

  20. W. He, J.S. Yi and T.V. Nguyen, AIChE J. 46 (2000) 2053.

    Google Scholar 

  21. G.J.M. Janssen, J. Electrochem. Soc. 148 (2001) A1313.

    Google Scholar 

  22. T. Berning, D.M. Lu and N. Djilali, J. Power Sources 106 (2002) 284.

    Google Scholar 

  23. A. Rowe and X. Li, J. Power Sources 102 (2001) 82.

    Google Scholar 

  24. M. Wöhr, K. Bollwin, W. Schnurnberger, M. Fisher, W. Neubrand and G. Eigenberger, Int. J. Hydrogen Energy 23 (1998) 213.

    Google Scholar 

  25. S. Shimpalee and S. Dutta, J. Numer. Heat Transf. Part A 38 (2000) 111.

    Google Scholar 

  26. S. Shimpalee, ‘Numerical prediction of gas-humidification effects on energy transfer in PEM fuel cells’, Dissertation (University of South Carolina, Columbia, 2001).

    Google Scholar 

  27. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen and P. Lund, J. Power Sources 106 (2002) 304.

    Google Scholar 

  28. M. Noponen, T. Hottinen, T. Mennola, M. Mikkola and P. Lund, J. Appl. Electrochem., submitted and accepted.

  29. M. Roos, U. Harnisch and T. Hocker, ‘Incompressible Flow Through Ducts’, Internal report (Center for Computational Physics, Zürich University of Applied Sciences Winterthur, Switzerland, 2002).

    Google Scholar 

  30. K-T. Lee, Int. J. Heat Mass Transf. 42 (1999) 4523.

    Google Scholar 

  31. E.N. Fuller, P.D. Schettler and J.C. Giddings, Ind. Eng. Chem. 58 (1966) 19.

    Google Scholar 

  32. R.B. Bird, W.E. Stewart and E.N. Lightfoot, ’Transport phenomena’. (J. Wiley & Sons, New York, 1960).

    Google Scholar 

  33. J. Neutzler, J.W. Bostaph and A.M. Fisher, Patent WO 0 249 136 (2002).

  34. M.S. Wilson, US Patent 5 514 486 (1996).

  35. J.K. Neutzler and M.S. Wilson, US Patent 5 595 834 (1997).

  36. R. Jiang and D. Chu, J. Power Sources 93 (2001) 25.

    Google Scholar 

  37. H. Chang, J-R. Kim, J-H. Cho, H-K. Kim and K-H. Choi, Solid State Ionics 148 (2002) 601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mennola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennola, T., Noponen, M., Aronniemi, M. et al. Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell. Journal of Applied Electrochemistry 33, 979–987 (2003). https://doi.org/10.1023/A:1026279431097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026279431097

Navigation