Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 979–987 | Cite as

Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell

  • T. MennolaEmail author
  • M. Noponen
  • M. Aronniemi
  • T. Hottinen
  • M. Mikkola
  • O. Himanen
  • P. Lund
Article

Abstract

In small fuel cell applications, it is desirable to take care of the management of reactants, water and heat by passive means in order to minimize parasitic losses. A polymer electrolyte membrane fuel cell, in which air flow on the cathode was driven by free convection, was studied by experimental and modelling methods. The cathode side of the cell had straight vertical channels with their ends open to the ambient air. A two-dimensional, isothermal and steady state model was developed for the cathode side to identify the limiting processes of mass transport. The modelled domain consists of the cathode gas channel and the gas diffusion layer. Experimental data from current distribution measurements were used to provide boundary conditions for oxygen consumption and water production. The model results indicate that at the cell temperature of 40 °C the performance of the cell was limited by water removal. At the cell temperature of 60 °C, the current distribution was determined by the partial pressure of oxygen.

current distribution free convection modelling polymer electrolyte membrane fuel cell water management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Heinzel, C. Hebling, M. Müller, M. Zedda and C. Müller, J. Power Sources 105 (2002) 250.Google Scholar
  2. 2.
    J.P. Meyers and H.L. Maynard, J. Power Sources 109 (2002) 76.Google Scholar
  3. 3.
    C.K. Dyer, J. Power Sources 106 (2002) 31.Google Scholar
  4. 4.
    J. Vanhanen, ‘On the performance improvements of small-scale photovoltaic-hydrogen systems’, Dissertation (Helsinki University of Technology, Espoo, 1996).Google Scholar
  5. 5.
    T.B. Atwater, P.J. Cygan and C.L. Fee, J. Power Sources 91 (2000) 27.Google Scholar
  6. 6.
    J.M. Moore, B.J. Lakeman and G.O. Mepsted, J. Power Sources 106 (2002) 16.Google Scholar
  7. 7.
    J.W. Raadschelders and T. Jansen, J. Power Sources 96 (2001) 160.Google Scholar
  8. 8.
    D. Chu, R. Jiang, K. Gardner, R. Jacobs, J. Schmidt, T. Quakenbush and J. Stephens, J. Power Sources 96 (2001) 174.Google Scholar
  9. 9.
    D.M. Bernardi and M. Verbrugge, AIChE J. 37 (1991) 1151.Google Scholar
  10. 10.
    D.M. Bernardi and M. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.Google Scholar
  11. 11.
    T.E. Springer, T.A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  12. 12.
    T.E. Springer, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 3513.Google Scholar
  13. 13.
    T.F. Fuller and J. Newman, J. Electrohem. Soc. 140 (1993) 1218.Google Scholar
  14. 14.
    T.V. Nguyen and R.E. White, J. Electrochem. Soc. 140 (1993) 2178.Google Scholar
  15. 15.
    V. Gurau, H. Liu and S. Kakac¸, AIChE J. 44 (1998) 2410.Google Scholar
  16. 16.
    S. Um, C-Y. Wang and K-S. Chen, J. Electrochem. Soc. 147 (2000) 4485.Google Scholar
  17. 17.
    K. Dannenberg, P. Ekdunge and G. Lindbergh, J. Appl. Electrochem. 30 (2000) 1377.Google Scholar
  18. 18.
    Z-H. Wang, C-Y. Wang and K-S. Chen, J. Power Sources 94 (2001) 40.Google Scholar
  19. 19.
    D. Natarajan and T.V. Nguyen, J. Electrochem. Soc. 148 (2001) A1324.Google Scholar
  20. 20.
    W. He, J.S. Yi and T.V. Nguyen, AIChE J. 46 (2000) 2053.Google Scholar
  21. 21.
    G.J.M. Janssen, J. Electrochem. Soc. 148 (2001) A1313.Google Scholar
  22. 22.
    T. Berning, D.M. Lu and N. Djilali, J. Power Sources 106 (2002) 284.Google Scholar
  23. 23.
    A. Rowe and X. Li, J. Power Sources 102 (2001) 82.Google Scholar
  24. 24.
    M. Wöhr, K. Bollwin, W. Schnurnberger, M. Fisher, W. Neubrand and G. Eigenberger, Int. J. Hydrogen Energy 23 (1998) 213.Google Scholar
  25. 25.
    S. Shimpalee and S. Dutta, J. Numer. Heat Transf. Part A 38 (2000) 111.Google Scholar
  26. 26.
    S. Shimpalee, ‘Numerical prediction of gas-humidification effects on energy transfer in PEM fuel cells’, Dissertation (University of South Carolina, Columbia, 2001).Google Scholar
  27. 27.
    M. Noponen, T. Mennola, M. Mikkola, T. Hottinen and P. Lund, J. Power Sources 106 (2002) 304.Google Scholar
  28. 28.
    M. Noponen, T. Hottinen, T. Mennola, M. Mikkola and P. Lund, J. Appl. Electrochem., submitted and accepted.Google Scholar
  29. 29.
    M. Roos, U. Harnisch and T. Hocker, ‘Incompressible Flow Through Ducts’, Internal report (Center for Computational Physics, Zürich University of Applied Sciences Winterthur, Switzerland, 2002).Google Scholar
  30. 30.
    K-T. Lee, Int. J. Heat Mass Transf. 42 (1999) 4523.Google Scholar
  31. 31.
    E.N. Fuller, P.D. Schettler and J.C. Giddings, Ind. Eng. Chem. 58 (1966) 19.Google Scholar
  32. 32.
    R.B. Bird, W.E. Stewart and E.N. Lightfoot, ’Transport phenomena’. (J. Wiley & Sons, New York, 1960).Google Scholar
  33. 33.
    J. Neutzler, J.W. Bostaph and A.M. Fisher, Patent WO 0 249 136 (2002).Google Scholar
  34. 34.
    M.S. Wilson, US Patent 5 514 486 (1996).Google Scholar
  35. 35.
    J.K. Neutzler and M.S. Wilson, US Patent 5 595 834 (1997).Google Scholar
  36. 36.
    R. Jiang and D. Chu, J. Power Sources 93 (2001) 25.Google Scholar
  37. 37.
    H. Chang, J-R. Kim, J-H. Cho, H-K. Kim and K-H. Choi, Solid State Ionics 148 (2002) 601.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • T. Mennola
    • 1
    Email author
  • M. Noponen
    • 1
  • M. Aronniemi
    • 1
  • T. Hottinen
    • 1
  • M. Mikkola
    • 1
  • O. Himanen
    • 1
  • P. Lund
    • 1
  1. 1.Laboratory of Advanced Energy SystemsHelsinki University of TechnologyEspooFinland

Personalised recommendations