Skip to main content
Log in

Non-isothermal hydrophobicity-dependent two-phase flow in the porous cathode gas diffusion layer of a polymer electrolyte fuel cell

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we extend a recent one-dimensional isothermal steady-state generalized Darcy model for two-phase flow in the porous cathode gas diffusion layer of a polymer electrolyte fuel cell, so as to include the effect of heat transfer. As for the isothermal case, we arrive at either a fixed- or free-boundary problem, depending on the main problem parameters: inlet temperature (\(T^\mathrm{in}\)), inlet water saturation (\(s^\mathrm{in}\)), inlet relative humidity (RH), porous medium hydrophobicity and cathode overpotential (\(\eta \)). The inclusion of heat transfer is found to limit the range of values of \(\eta ,T^\mathrm{in}\) and RH over which two-phase flow can occur, as compared to that predicted by the isothermal model. The ensuing non-isothermal two-phase flow model equations are then computed numerically, with particular care being required for the treatment of an integrably singular inter-phase mass transfer term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Noponen M, Birgersson E, Ihonen J, Vynnycky M, Lundblad A, Lindbergh G (2004) A two-phase non-isothermal PEFC model: theory and validation. Fuel Cells 4:365–377

    Article  Google Scholar 

  2. Yuan J, Sundén B (2004) Two-phase flow analysis in a cathode duct of PEFCs. Electrochimica Acta 50:677–683

    Article  Google Scholar 

  3. Yuan J, Sundén B (2004) Three-dimensional analysis of two-phase flow and its effects on the cell performance of PEMFC. Numer Heat Transf 46:669–694

    Article  Google Scholar 

  4. Birgersson E, Noponen M, Vynnycky M (2005) Analysis of a two-phase non-isothermal model for a PEFC. J Electrochem Soc 152:A1021–A1034

    Article  Google Scholar 

  5. Senn SM, Poulikakos D (2005) Multiphase transport phenomena in the diffusion zone of a PEM fuel cell. J Heat Transf 127:1245–1259

    Article  Google Scholar 

  6. Acosta M, Merten C, Eigenberger G, Class H, Helmig R, Thoben B, Müller-Steinhagen H (2006) Modelling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. J Power Sources 159:1123–1141

    Article  Google Scholar 

  7. Song D, Wang Q, Liu Z-S, Huang C (2006) Transient analysis for the cathode gas diffusion layer of PEM fuel cells. J Power Sources 159:928–942

    Article  Google Scholar 

  8. Wang Y, Wang C-Y (2006) A non-isothermal, two-phase model for polymer electrolyte fuel cells. J Electrochem Soc 153:A1193–A1200

    Article  Google Scholar 

  9. Meng H (2007) A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. J Power Sources 168:218–228

    Article  Google Scholar 

  10. Sadiq Al-Baghdadi MAR, Shahad Al-Janabi HAK (2007) Modeling optimizes PEM fuel cell performance using three-dimensional multi-phase computational fluid dynamics model. Energy Conv Manag 48:3102–3119

    Article  Google Scholar 

  11. Gurau V, Mann JA (2009) A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J Appl Math 70:410–454

    Article  MATH  MathSciNet  Google Scholar 

  12. Afshari E, Jazayeri SA (2010) Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Conv Manag 51:655–662

    Article  Google Scholar 

  13. Min C-H (2010) A novel three-dimensional, two-phase and non-isothermal numerical model for proton exchange membrane fuel cell. J Power Sources 195:1880–1887

    Article  Google Scholar 

  14. Wu H, Berg P, Li X (2010) Steady and unsteady 3D non-isothermal modeling of PEM fuel cells with the effect of non-equilibrium phase transfer. Appl Energy 87:2778–2784

    Article  Google Scholar 

  15. Caulk DA, Baker DR (2011) Modeling two-phase water transport in hydrophobic diffusion media for PEM fuel cells. J Electrochem Soc 158:B384–B393

    Article  Google Scholar 

  16. Ly H, Birgersson E, Vynnycky M (2011) Computationally efficient multi-phase models for a proton exchange membrane fuel cell: asymptotic reduction and thermal decoupling. Int J Hydrogen Energy 36:14573–14589

    Article  Google Scholar 

  17. Yang X-G, Ye Q, Cheng P (2011) Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions. Int J Hydrogen Energy 36:12524–12537

    Article  Google Scholar 

  18. Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194:146–160

    Article  Google Scholar 

  19. Arvay A, Yli-Rantala E, Liu C-H, Peng XH, Koski P, Cindrella L, Kauranen P, Wilde PM, Kannan AM (2012) Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells—a review. J Power Sources 213:317–337

    Article  Google Scholar 

  20. Whitaker S (1977) Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Transf 13:119–203

    Article  Google Scholar 

  21. Udell KS (1983) Heat transfer in porous media heated from above with evaporation, condensation and capillary effects. J Heat Transf 105:485–492

    Article  Google Scholar 

  22. Udell KS (1985) Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. Int J Heat Mass Transf 28:485–495

    Article  ADS  MATH  Google Scholar 

  23. Torrance KE (1986) Phase-change heat transfer in porous media. Heat Transf 1:181–188

    Google Scholar 

  24. Baggio P, Bonacina C, Schrefler BA (1997) Some considerations on modeling heat and mass transfer in porous media. Trans Porous Media 28:233–251

    Article  Google Scholar 

  25. Bridge L, Bradean R, Ward MJ, Wetton BR (2003) The analysis of a two-phase zone with condensation in a porous medium. J Eng Maths 45:247–268

    Article  MATH  MathSciNet  Google Scholar 

  26. Bridge LJ, Wetton BR (2007) A mixture formulation for numerical capturing of a two-phase/vapour interface in a porous medium. J Comput Phys 225:2043–2068

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Niessner J, Hassanizadeh SM (2009) Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media—theoretical considerations and modeling. Adv Water Res 32:1756–1766

    Article  Google Scholar 

  28. Wei K, Wang JH, Mao M (2012) Model discussion of transpiration cooling with boiling. Trans Porous Media 94:303–318

    Article  MathSciNet  Google Scholar 

  29. Vynnycky M, Gordon A (2013) On the hydrophobicity and hydrophilicity of the cathode gas diffusion layer in a polymer electrolyte fuel cell. Proc R Soc A 469:20120695

  30. Pasaogullari U, Wang C-Y (2004) Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J Electrochem Soc 151:A399–A406

    Article  Google Scholar 

  31. Wang Y, Chen KS (2011) Effect of spatially-varying GDL properties and land compression on water distribution in PEM fuel fells. J Electrochem Soc 158:B1292–B1299

    Article  Google Scholar 

  32. Wang Y, Chen KS (2010) Through-plane water distribution in a polymer electrolyte fuel cell: comparison of numerical prediction with neutron radiography data. J Electrochem Soc 157:B1878–B1886

    Article  Google Scholar 

  33. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M (2000) Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 86:250–254

    Article  Google Scholar 

  34. Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS (2004) Effect of PTFE contents in the gas diffusion media on the performance of PEMFC. J Power Sources 131:182–187

    Article  Google Scholar 

  35. Nakajima H, Konomi T, Kitahara T (2007) Direct water balance analysis on a polymer electrolyte fuel cell (PEFC): Effects of hydrophobic treatment and micro-porous layer addition to the gas diffusion layer of a PEFC on its performance during a simulated start-up operation. J Power Sources 171:457–463

    Article  Google Scholar 

  36. Park S, Lee JW, Popov BN (2008) Effect of PTFE content in microporous layer on water management in PEM fuel cells. J Power Sources 177:457–463

    Article  Google Scholar 

  37. Vynnycky M (2007) On the modelling of two-phase flow in the gas diffusion layer of a polymer electrolyte fuel cell. Appl Math Comput 189:1560–1575

    Article  MATH  MathSciNet  Google Scholar 

  38. Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150:A1589–A1598

    Article  Google Scholar 

  39. Gurau V, Zawodzinski TA, Mann JA (2008) Two-phase transport in PEM fuel cell cathodes. J Fuel Cell Sci Tech 5:021009

  40. Mazumder S, Cole JV (2003) Rigorous 3-D mathematical modeling of PEM fuel cells. J Electrochem Soc 150:A1510–1517

    Article  Google Scholar 

  41. Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. Ann Physik (Leipzig) 24:636–679

    Article  ADS  Google Scholar 

  42. Nam JH, Kaviany M (2003) Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int J Heat Mass Trans 46:4595–4611

    Article  Google Scholar 

  43. Hirschfelder JO, Curtiss CF, Bird RB (1954) Theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  44. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  45. Gawin D, Majorana CE, Schrefler BA (1999) Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech Cohesive-Friction Mater 4:37–74

    Article  Google Scholar 

  46. Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    MATH  Google Scholar 

  47. Vargaftik BN, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12(3):817–820

    Article  ADS  Google Scholar 

  48. Natarajan D, van Nguyen T (2003) Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J Power Sources 115:66–80

    Article  Google Scholar 

  49. Wang Y, Chen KS (2011) Elucidating two-phase transport in a polymer electrolyte fuel cell, part 1: characterizing flow regimes with a dimensionless group. Chem Eng Sci 66:3557–3567

    Article  Google Scholar 

  50. He W, Yi JS, Nguyen TV (2000) Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields. AIChE J 10:2053–2064

    Article  Google Scholar 

  51. Natarajan D, Nguyen TV (2001) A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J Electrochem Soc 148:A1324–A1335

    Article  Google Scholar 

  52. Wang Y, Wang C-Y (2007) Two-phase transients of polymer electrolyte fuel cells. J Electrochem Soc 154:B636–B643

    Article  Google Scholar 

  53. Jang F, Wang C-Y (2014) Numerical modeling of liquid water motion in a polymer electrolyte fuel cell. Int J Hydrogen Energy 39:942–950

    Article  Google Scholar 

  54. Promislow K, Chang P, Haas H, Wetton B (2008) Two-phase unit cell model for slow transients in polymer electrolyte membrane fuel cells. J Electrochem Soc 155:A494–A504

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie), funded by the Science Foundation Ireland (SFI) Mathematics Initiative grant 06/MI/005 and SFI grant 12/IA/1683. The first author also acknowledges the award of a visiting researcher grant within the Government of Brazil’s “ Science without Borders” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vynnycky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vynnycky, M., Gordon, A.D. Non-isothermal hydrophobicity-dependent two-phase flow in the porous cathode gas diffusion layer of a polymer electrolyte fuel cell. J Eng Math 92, 123–146 (2015). https://doi.org/10.1007/s10665-014-9748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9748-8

Keywords

Navigation