Skip to main content
Log in

Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake – Lake Donghu, Wuhan, China

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (−0.37–1.25 d−1), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5 °C, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from −2.25 to 35.45 mg l−1 d−1 with mean of 3.17 mg l−1d−1. When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) - a review. Hydrobiologia 255/256: 231-246.

    Google Scholar 

  • Arndt, H. & B. Nixdorf, 1991. Spring clear-water phase in a eutrophic lake: control by herbivorous zooplankton enhanced by grazing on components of the microbial web. Verh. int. Ver. Limnol. 24: 879-883.

    Google Scholar 

  • Azam, F., T. I. G. Fenchel, J. S. Field, L. A. Gray, Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-273.

    Google Scholar 

  • Barry, J. W. & F. H. Bruce, 1992. A short procedure for protargol staining. Soc. Protozool. C-5.1-C-5.3.

  • Caron, D. A., 1990. Growth of two species of bacterivorous nanoflagellates in batch and continuous culture, and implication for their planktonic existence. Mar. Microb. Food Webs 4: 143-159.

    Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin & J. McN. Sieburth, 1982. Heterotrophic bacteria and bacteriovorous protozoa in oceanic microaggregates. Science 218: 795-797.

    Google Scholar 

  • Caron, D. A., 1991. Evolving role of protozoa in aquatic nutrient cycles. In Reid, P. C. et al. (ed.), Protazoa and their Role in Marine Processes. Springer-Verlag, Berlin, Heidelberg: 387-415.

    Google Scholar 

  • Carrias, J. F., C. Amblard, C. Q. Lloberas & G. Bourdier, 1998. Seasonal dynamics of free and attached heterotrophic nanoflagellates in an oligomesotrophic lake. Freshwat. Biol. 39: 91-101.

    Google Scholar 

  • Carrick, H. J., G. L. Fahnenstiel & W. D. Taylor, 1992. Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235.

    Google Scholar 

  • Chrzanowski, T. H. & K. Šimek, 1993. Bacterial growth and losses due to bacterivory in a mesotrophic lake. J. Plankton Res. 15: 771-785.

    Google Scholar 

  • Ekelund, F. & D. J. Patterson, 1997. Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch. Prostistenkd. 148: 461-478.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. ?. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35-42.

    Google Scholar 

  • Gasol, J. M. & D. Vaqué, 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems. Limnol. Oceanogr. 38: 657-665.

    Google Scholar 

  • Hansen, B. & C. Christoffersen, 1995. Specific growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J. Plankton Res. 17: 413-430.

    Google Scholar 

  • Holen, D. A. & M. E. Boraas, 1991. The feeding behavior of Spumella sp. as a function of particle size: implications for bacterial size in pelagic systems. Hydrobiologia 220: 73-88.

    Google Scholar 

  • Huang, X. F., 1990. Zooplankton. In Ecological Studies of Lake Donghu. Vol. 1. Science Press, Beijing: 104-128 (in Chinese).

    Google Scholar 

  • Jürgens, K., 1994. Impact of Daphnia on planktonic microbial food webs - a review. Mar. Microb. Food webs 8: 295-324.

    Google Scholar 

  • Landry, M. R., W. Haas & V. I. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127-133.

    Google Scholar 

  • Larsen, J. & D. J. Patterson, 1990. Some flagellates (Protista) from tropical marine sediments. J. nat. Hist. 24: 801-937.

    Google Scholar 

  • Laybourn-Parry, J. L. & M. Walton, 1998. Seasonal heterotrophic flagellate and bacterial plankton dynamics in a large oligotrophic lake - Loch Ness, Scotland. Freshwat. Biol. 39: 1-8.

    Google Scholar 

  • Laybourn-Parry, J. L., M. Walton, J. Young, R. I. Jones & A. Shine, 1994. Proto-zooplankton and bacterio-plankton in a large oligotrophic lake - Loch Ness, Scotland. J. Plankton Res. 16: 1655-1670.

    Google Scholar 

  • Liu, Q. X. & S. Y. Zhang, 1990. The physical and chemical characters of lake waters. In Ecological Studies of Lake Dongh. Vol. 1. Science Press, Beijing: 10-51 (in Chinese).

    Google Scholar 

  • Monakov, A. V., 1985. Fresh-water Choanoflagellates. Nayuka: 34-113.

  • Nagata, T., 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517.

    Google Scholar 

  • Nakano, S., N. Ishii, P. M. Manage & Z. Kawabata, 1998a. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat. Microb. Ecol. 16: 153-161.

    Google Scholar 

  • Nakano, S., T. Koitabashi & T. Ueda, 1998b. Seasonal changes in abundance of heterotrophic nanofalgellates and their consumption of bacteria in Lake Biwa with special reference to trophic interactions with Daphnia galeata. Arch. Hydrobiol. 142: 21-34.

    Google Scholar 

  • Patterson D. J. & J. Larsen, 1991. The Biology of Free-living Heterotrophic Flagellates. Clarendon Press, Oxford: 1-476.

    Google Scholar 

  • Patterson D. J. & A. G. B. Simpson, 1996. Heterotrophic flagellates from coastal marine and hupersaline sediments in Western Australia. Eur. J. Protistol. 32: 423-428.

    Google Scholar 

  • Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Mar. Microb. Food Webs 7: 69-100.

    Google Scholar 

  • Sanders, R.W., D. A. Caron & U.-G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Limnol. Oceanogr. 34: 673-687.

    Google Scholar 

  • Šimek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba & R. Paenner, 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanofalgellates in a eutrophic reservoir during the summer photoplankton maximum. Aquat. Microb. Ecol. 12: 49-63.

    Google Scholar 

  • Shen, Y. F., 1998. The diversity of freshwater protozoas and the pollution stress on protozoa in China. Chinese Biodiversity 6: 81-86.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Envir. Microbiol. 45: 1196-1201.

    Google Scholar 

  • Stoecker, D., L. H. Davis & A. Provan, 1983. Growth of Favella sp. (Ciliata: Tintinnina) and other zooplankters in cages incubated in situ and comparison to growth in vitro. Mar. Biol. 75: 293-302.

    Google Scholar 

  • Tong, S. M., K. Nygaard, C. Bernard, N. Vørs & D. J. Patterson, 1998. Heterotrophic flagellates from the water column in Port Jackson, Sydney, Australia. Eur. J. Protistol. 34: 162-194.

    Google Scholar 

  • Weinbauer, M. G. & M. G. Höfle, 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. envir. Microbiol. 64: 431-438.

    Google Scholar 

  • Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton Res. 13: 167-185.

    Google Scholar 

  • Weisse, T., 1997. Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J. Plankton Res. 19: 703-722.

    Google Scholar 

  • Wu, S. G., 1996. Studies on Succession of Zooplankton Community Structure in Lake Donghu, Wuhan. Ph.D. thesis of The Chinese Academy of Sciences. Institute of Hydrobiology, CAS. Wuhan.

  • Xie, P., X. F. Huang & N. Takamura, 2000. Changes of Leptodora kind.ti abundance (1957-1996) in a planktivorous fishesdominated subtropical Chinese lake (Lake Donghu). Arch. Hydrobiol. 147: 351-372.

    Google Scholar 

  • Zhao, Y. F., 2000. Studies on biology of free-living heterotrophic flagellates. Master's thesis of The Chinese Academy of Sciences. Institute of Hydrobiology, CAS. Wuhan: 31-35.

  • Zhu, G. Y. & X. F. Huang, 1995. Species succession and quantity dynamics of Rotifera Zooplankton in Lake Donghu. In Ecological Studies of Lake Donghu. Vol. 2. Science Press, Beijing: 207-234 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yu, Y., Feng, W. et al. Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake – Lake Donghu, Wuhan, China. Hydrobiologia 498, 85–95 (2003). https://doi.org/10.1023/A:1026239306120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026239306120

Navigation