Skip to main content
Log in

Heterotrophic nanoflagellates in water column and bottom sediments of the Rybinsk Reservoir: Species composition, abundance, biomass and their grazing impact on bacteria

  • Zooplankton, Zoobenthos, and Zooperiphyton
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Abundance, biomass, and taxonomic composition of heterotrophic nanoflagellates (HNFs) have been determined in the water column and bottom sediments of the large lowland meso-eutrophic reservoir (Rybinsk Reservoir, Upper Volga) in summer. The role of HNFs in the consumption of the bacterial production is estimated. In the reservoir, 55 species from 15 large taxa, including 35 species from the plankton, are identified and 45 species are from benthos samples. The orders Kinetoplastida, Choanomonada, and Chrysomonadida are distinguished by the highest species diversity. Abundance and biomass of HNFs in the water column average 991 ± 326 cells/mL and 41.4 ± 14.1 mg/m3, while in the bottom sediments they are (236 ± 61) × 103 cells/mL and 10.7 ± 4.0 μg/mL, respectively. The biomass of HNFs average 11.2% of the bacterial biomass in the water column and only 0.8% of that in the sediments. Flagellates are found to be a major factor which control the development of bacterioplankton grazing, on average, 32.3% of its daily production, whereas their impact on bacteriobenthos is insignificant, as they consume, on average, only 2.0% of its production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhukov, B.F., Atlas Presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Systematics)), Rybinsk: Dom pechati, 1993, vol. 160.

  2. Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bacterioplankton of the Upper and Middle Volga Reservoirs), Moscow: Izd. Sovrem. Gumanitar. Univ., 2008.

    Google Scholar 

  3. Kopylov, A.I., Kosolapov, D.B., Zabotkina, E.A., and Rumyantseva, E.V., Viruses in bottom sediments of a mesotrophic reservoir (Rybinsk Reservoir, Upper Volga), Inland Water Biol., 2016, vol. 9, no. 3, pp. 251–257.

    Article  Google Scholar 

  4. Kopylov, A.I., Kosolapov, D.B., Rybakova, I.V., and Zabotkina, E.A., Microbial community of epiphyton in a reservoir: the role of viruses in mortality of heterotrophic bacteria and picocyanobacteria, Usp. Sovrem. Biol., 2014, vol. 134, no. 2, pp. 111–120.

    Google Scholar 

  5. Krylova, I.N., Romanenko, A.V., and Tsvetkov, A.I., Intensity of feeding of freshwater benthic heterotrophic nanoflagellates on bacteria in summer, Biol. Vnutr. Vod, 2005, no. 2, pp. 69–74.

    Google Scholar 

  6. Papchenkov, V.G., The degree of overgrowth of the Rybinsk Reservoir and productivity of its vegetation cover, Inland Water Biol, 2013, vol. 6, no. 1, pp. 18–25.

    Article  Google Scholar 

  7. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov. Lab. rukovodstvo (Ecology of Freshwater Microorganisms: A Laboratory Guide), Leningrad: Nauka, 1974.

    Google Scholar 

  8. Arndt, H., Dietrich, D., Auer, B., et al., Functional diversity of heterotrophic flagellates in aquatic ecosystems, in The Flagellates, Unity, Diversity and Evolution, London: Taylor & Francis, 2000, pp. 240–268.

    Google Scholar 

  9. Auer, B. and Arndt, H., Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season, Freshwater Biol., 2001, vol. 46, pp. 959–972.

    Article  Google Scholar 

  10. Azam, F., Fenchel, T., Field, J.G., et al., The ecological role of water-column microbes in the sea, Mar. Ecol.: Proc. Ser., 1983, vol. 10, pp. 257–263.

    Article  Google Scholar 

  11. Bell, R.T., Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis Publ., 1993, pp. 495–503.

    Google Scholar 

  12. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 34, pp. 491–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eccleston-Parry, J.D. and Leadbeater, B.S.C., A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species, Mar. Ecol.: Proc. Ser., 1994, vol. 105, pp. 167–177.

    Article  Google Scholar 

  14. Epstein, S.S., Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities, Microb. Ecol., 1997, vol. 34, pp. 188–198.

    Article  CAS  PubMed  Google Scholar 

  15. Fenchel, T., Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers, Mar. Ecol. Progr. Ser., 1982, vol. 9, no. 3, pp. 35–42.

    Article  Google Scholar 

  16. Fenchel, T., The ecology of heterotrophic microflagellates, Adv. Microb. Ecol., 1986, vol. 9, pp. 57–97.

    Article  Google Scholar 

  17. Fischer, U.R., Wieltschnig, C., Velimirov, B., and Kirschner, A.K.T., Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms, Environ. Microbiol., 2006, vol. 8, no. 8, pp. 1394–1407.

    Article  CAS  PubMed  Google Scholar 

  18. Gucker, B. and Fischer, H., Flagellate and ciliate distribution in sediments of a lowland river: relationships with environmental gradients and bacteria, Aquat. Microb. Ecol., 2003, vol. 31, pp. 67–76.

    Article  Google Scholar 

  19. Hamels, I., Muylaert, K., Casteleyn, G., and Vyverman, W., Uncoupling of bacterial production and flagellate grazing in aquatic sediments: a case study from an intertidal flat, Aquat. Microb. Ecol., 2001, vol. 25, pp. 31–42.

    Article  Google Scholar 

  20. Hondeveld, B.J.M., Nieuwland, G., Van Duyl, F.C., and Bak, R.P.M., Impact of nanoflagellate bacterivory on benthic bacterial production in the north sea, Neth. J. Sea Res., 1995, vol. 34, no. 4, pp. 275–287.

    Article  Google Scholar 

  21. Jürgens, K., Pernthaler, J., Schalla, S., and Amann, R., Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing, Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 1241–1250.

    PubMed  PubMed Central  Google Scholar 

  22. Laybourn-Parry, J. and Parry, J., Flagellates and the microbial loop, in The Flagellates, Unity, Diversity and Evolution, London: Taylor and Francis, 2000, pp. 216–239.

    Google Scholar 

  23. Lee, W.J. and Patterson, D.J., Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay, Microb. Ecol., 2002, vol. 43, pp. 467–481.

    Article  CAS  PubMed  Google Scholar 

  24. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis Publ., 1993, pp. 303–308.

    Google Scholar 

  25. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  26. Sanders, R.W., Trophic strategies among heterotrophic flagellates, in The Biology of Free-Living Heterotrophic Flagellates, Systematics Association, spec. vol. 45, Oxford: Clarendon Press, 1991, pp. 21–38.

    Google Scholar 

  27. Sanders, R.W., Caron, D.A., and Berninger, U.G., Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison, Mar. Ecol.: Proc. Ser., 1992, vol. 86, pp. 1–14.

    Article  Google Scholar 

  28. Sherr, E.B. and Sherr, B.F., Protistan grazing rates via uptake of fluorescently labeled prey, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis Publ., 1993, pp. 695–701.

    Google Scholar 

  29. Starink, M., Bar-Gilissen, M.-J., Bak, R.P.M., and Cappenberg, T.E., Bacterivory by heterotrophic nanoflagellates and bacterial production in sediments of a freshwater littoral system, Limnol., Oceanogr., 1996, vol. 41, no. 1, pp. 62–69.

    Article  CAS  Google Scholar 

  30. Velju, M.I. and Albright, L.J., Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter, and kelp samples following pyrophosphate and ultrasound treatments, Can. J. Microbiol., 1986, vol. 32, no. 2, pp. 121–126.

    Article  Google Scholar 

  31. Vørs, N., Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990, Ophelia, 1992, vol. 36, no. 1, pp. 1–109.

    Article  Google Scholar 

  32. Wang, W., Shor, L.M., Le Boeuf, E.J., et al., Mobility of protozoa through narrow channels, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4628–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weisse, T., The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control, J. Plankton Res., 1991, vol. 13, pp. 167–185.

    Article  Google Scholar 

  34. Wieltschnig, C., Fischer, U.R., Kirschner, A.K.T., and Velimirov, B., Benthic bacterial production and protozoan predation in a silty freshwater environment, Microb. Ecol., 2003, vol. 46, pp. 62–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Kosolapov.

Additional information

Original Russian Text © D.B. Kosolapov, A.I. Kopylov, N.G. Kosolapova, 2017, published in Biologiya Vnutrennykh Vod, 2017, No. 2, pp. 76–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosolapov, D.B., Kopylov, A.I. & Kosolapova, N.G. Heterotrophic nanoflagellates in water column and bottom sediments of the Rybinsk Reservoir: Species composition, abundance, biomass and their grazing impact on bacteria. Inland Water Biol 10, 192–202 (2017). https://doi.org/10.1134/S1995082917020079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082917020079

Keywords

Navigation