Skip to main content
Log in

Sublethal predation on Stylaria lacustris: a study of regenerative capabilities

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Research on predator–prey interaction has generally ignored the possibility of prey injury by predator. Although injured prey usually constitute a minor group in a population, sublethal predation can play an important role in some aquatic assemblages. In a laboratory experiment, I tested the effect of attack by larvae of the damselfly Ischnura elegans and tanyponid Clinotanypus nervosus on the oligochaete Stylaria lacustris. Predation by these insect larvae caused damage to the prey which then are able to escape and survive. More than 50% of the worms used in the experiment were damaged by C. nervosus. Results of predation by I. elegans larvae of different lengths showed that the number of damaged worms decreased with the length of predatory larvae. Small predators injured more worms than large ones, which killed and totally consumed most of the prey. Damage to S. lacustris usually involves the loss of anterior, posterior or both these fragments (middle part preserved). An analysis of the survival of worms revealed that individuals which lost anterior, posterior, or both fragments survived equally well as control ones, with the exception of worms that lost 70% of the body length posteriorly amputated. It should be noted that these worms were the least numerous in all worms damaged by predators. The laboratory experiment on the regenerative capability of S. lacustris showed that after amputation, all worms regenerated the lost structures and started to increase in length. The small individuals after amputation of both anterior and posterior fragments achieved their initial length in the course of the experiment. It is likely that the regenerative capability in S. lacustris is an adaptation to sublethal effects of predation, which seems to play an important role in littoral assemblages dominated by oligochaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R. L. & S. M. Dixon, 1985. Wounding as an index of aggressive interactions in larval Zygoptera (Odonata). Can. J. Zool. 64: 893- 897.

    Google Scholar 

  • Balatre-Veltz, I., S. Biagianti-Risbourg & G. Vernet, 1999. Sur la régénération céphalique de Lumbriculus variegatus Mû ller, 1774 (Annelida, Oligochaeta). Bull. Soc. zool. Fr. 12: 101- 109.

    Google Scholar 

  • Bely, A., 1999. Decoupling of fission and regenerative capabilities in an asexual Oligochaete. Hydrobiologia 406: 243- 251.

    Google Scholar 

  • Bouguenec, V. & N. Giani, 1989. Les Oligochè tes aquatques en tant que proies des Invertè brè s et des Vertè brè s: une revue. Acta Oecol. 10: 177- 196.

    Google Scholar 

  • Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the world. Oliver and Boyd, Edinburgh.

  • Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115: 91- 95.

    Google Scholar 

  • Davies, R.W., F. J. Wrona, L. Linton & J. Wilkialis, 1981. Inter-and intra-specific analyses of the food niches of two sympatric species of Erpobdellidae (Hirudinoidea) in Alberta, Canada. Oikos 37: 105- 111.

    Google Scholar 

  • Drewes, C. D. & M. J. Zoran, 1989. Neurobehavioral specializations for respiratory movements and rapid escape from predators in posterior segments of the tubificid Branchiura sowerbyi. Hydrobiologia 180: 65- 71.

    Google Scholar 

  • Edwards, R., J. H. Steele & A. Trevallion, 1970. The ecology of 0-group plaice and common dabs in Loch Ewe. III. Prey- predator experiments with plaice. J. exp. mar. Biol. Ecol. 4: 156- 173.

    Google Scholar 

  • Gibson, G. D. & J. M. L. Harvey, 2000. Morphogenesis during asexual reproduction in Pygospio elegans Claparede (Annelida, Polychaeta), Biol. Bull. 199: 41- 49.

    Google Scholar 

  • Giere, O. & O. Pfannkuche, 1982. Biology and ecology of marine Oligochaeta: a review. Oceanogr. mar. biol. Ann. Rev. 20: 173- 308.

    Google Scholar 

  • Goss, R., 1969. Principles of regeneration. Academic Press, New York.

    Google Scholar 

  • Kajak, Z. & R. J. Wisniewski, 1966. An attempt at estimating the intensity of consumption of Tubificidae by predators. Ekol. pol. 9: 181- 184.

    Google Scholar 

  • Koperski, P., 1998. Feeding in epiphytic, carnivorous insects: resource partitioning and the avoidance of intraguild predation. Arch. Hydrobiol. 142: 467- 483.

    Google Scholar 

  • Lawrence, J. M. & J. Vasquez, 1996. The effect sublethal predation on the biology of echinoderms. Oceanol. Acta 19: 431- 440.

    Google Scholar 

  • Loden, M. S., 1974. Predation by chironomid (Diptera) larvae on oligochaetes. Limnol. Oceanogr. 19: 156- 159.

    Google Scholar 

  • Löhlein, B., 1996. Seasonal dynamics of aufwuchs Naididae (Oligochaeta) on Phragmites australis in a eutrophic lake. Hydrobiologia 334: 115- 123.

    Google Scholar 

  • Marrs et al., 2000. Size–related aspects arm damage, tissue mechanics,and autotomy in the starfish Asterias rubens. Mar. Biol. 137:59–70.

    Google Scholar 

  • Nilsson, C., 1986. The occurrence of lost and malformed legs in mayfly nymphs as a result of predator attacks. Ann. Zool. Fenn. 23: 57- 60.

    Google Scholar 

  • Pomory, C. M & J. M. Lawrence, 1999. Energy content of Ophiocoma echinata (Echinodermata: Ophiuroidea) maintained at different feeding levels during arm regeneration. J. exp. mar. Biol. Ecol. 238: 139- 150.

    Google Scholar 

  • Pomory, C. M. & M. T. Lares, 2000. Rate of regeneration of two arms in the field and its on body components in Luidia clathrata (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 254: 211- 220.

    Google Scholar 

  • Roback, S. S., 1969. Notes on the food of Tanypodinae larvae. Entomol. News 87: 13- 18.

    Google Scholar 

  • Roberts, T. R., 1972. Ecology of fishes in the Amazon and Congo basins. Bull. Mus. comppar. Zool. Harvard 143: 117- 147.

    Google Scholar 

  • Sazima, I., 1983. Scale eating in characoids and other fishes. Envir. Biol. Fish. 9: 87- 101.

    Google Scholar 

  • Seys, J., M. Vinex & P. Meire, 1999. Spatial disribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Sche;de estuary (Belgium). Hydrobiologia 406: 119- 132.

    Google Scholar 

  • Souter, D. W., A. M. Cameron & R. Endean, 1997. Implications of sublethal predation, autotomy and regeneration: pigment bands on their spines can not be used to determine the ages of adult specimens of the corallivore Acanthaster planci. Mar. Freshwat. Res. 48: 321- 328.

    Google Scholar 

  • Thompson, D. J., 1978. The natural prey of larvae of the damselfly. Ischnura elegans (Odonata: Zygoptera). Freshwat. Biol. 8: 377- 384.

    Google Scholar 

  • Tokeshi, M., 1991. On the feeding habits of Thienemannimyia festiva (Diptera: Chironomidae). Aquat. Insects 13: 9- 16.

    Google Scholar 

  • Wisniewski, R. J., 1978. Effect of predators on tubificidae groupings and their production in lakes. Ekol. pol. 26: 498- 512.

    Google Scholar 

  • Young, J. O., 1981. A comparative study of the food niches of lakedwelling triclads and Leeches. Hydrobiologia 84: 91- 102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliszewicz, A. Sublethal predation on Stylaria lacustris: a study of regenerative capabilities. Hydrobiologia 501, 83–92 (2003). https://doi.org/10.1023/A:1026207419281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026207419281

Navigation