Skip to main content
Log in

Membrane Fluidity of the Pentachlorophenol-Mineralizing Sphingomonas sp. UG30

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effect of PCP and NaPCP on the cytoplasmic membranes of the PCP-mineralizing bacterium Sphingomonas sp. UG30 was assessed using fluorescence polarization and total cellular fatty acid analysis. Direct exposure of resting UG30 cells to PCP up to 250 ppm and NaPCP up to 1000 ppm did not cause any changes in the polarization ratios or the fatty acid profile of the UG30 cytoplasmic membranes. Growth of UG30 cells in the presence of 25 ppm NaPCP did not affect the total cellular fatty acid profile or membrane fluidity as observed by fluorescence polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. D. Kaufman (1977). in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology, Plenum, New York, pp. 27-39.

    Google Scholar 

  2. D. P. Cirelli (1978). in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, vol. 12. Environmental Research, Plenum, New York, pp. 13-18.

    Google Scholar 

  3. WHO (1987). Pentachlorophenol. Environmental health criteria 71. Geneva: World Health Organization.

    Google Scholar 

  4. K. A. McAllister, H. Lee, and J. T. Trevors (1996). Microbial degradation of pentachlorophenol. Biodegradation 7, 1-40.

    Google Scholar 

  5. D. G. Crosby (1981). Environmental chemistry of pentachlorophenol. Pure. Appl. Chem. 53, 1051-1080.

    Google Scholar 

  6. R. C. Dougherty (1977). in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, Plenum, New York, pp. 351-361.

    Google Scholar 

  7. R. Frank, H. E. Braun, K. I. Stonefield, J. Rasper, and H. Luyken (1990). Organochlorine and organophosphorous residues in the fat of the domestic farm animals species, Ontario, Canada 1986-1988. Food. Addit. Contam. 7, 629-636.

    Google Scholar 

  8. J. P. Seiler (1991). Pentachlorophenol. Mutat. Res. 257, 27-47.

    Google Scholar 

  9. C. P. Sandau, P. Ayotte, E. Dewailly, J. Duffe, and R. J. Worstrom (2002). Pentachlorophenol and hydroxylated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environm. Health Perspect. 110, 411-417.

    Google Scholar 

  10. L. H. Keith and W. A. Telliard (1979). Priority pollutants I-A perspective view. Environ. Sci. Technol. 13, 416-423.

    Google Scholar 

  11. P. A. Jones (1981). Chlorophenols and Their Impurities in the Canadian Environment, En 46-4/81-2. Environment Canada, Ottawa.

  12. S. R. Wild, S. J. Harrad, and K. C. Jones (1993). Chlorophenols in digested U. K. sewage sludges. Water Res. 27, 1527-1534.

    Google Scholar 

  13. K. T. Leung, M. B. Cassidy, K. W. Shaw, H. Lee, J. T. Trevors, E. M. Lohmeier-Vogel, and H. J. Vogel (1997). Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J. Microbiol. Biotechnol. 13, 305-313.

    Google Scholar 

  14. E. Weinbach (1954). Effect of pentachlorophenol on oxidative phosphorylation. J. Biol. Chem. 210, 545-550.

    Google Scholar 

  15. K. Imai, A. Asano, and R. Sato (1967). Oxidative phosphorylation in Micrococcus denitrificans: I. Preparation and properties of phosphorylation membrane fragments. Biochem. Biophys. Acta. 143, 462-476.

    Google Scholar 

  16. P. Smejtek, A. W. Barstad, and S. Wang (1989). Pentachlorophenol induced change of µ-potential and gel-to-fluid transition temperature in model lecithin membranes. Chem. Biolog. Interact. 71, 37-61.

    Google Scholar 

  17. M. Suwalsky, M. A. Espinoza, M. Bagnara, and C. P. Sotomayor (1990). X-ray and fluorescence studies on phospholipid bilayers. IX. Interactions with pentachlorophenol. Z. Naturforsch. C 45, 265-272.

    Google Scholar 

  18. J. T. Trevors (1983). Effect of pentachlorophenol on the membrane fluidity of Pseduomonas fluorescens. FEMSMicrobiol. Lett. 16, 331-334.

    Google Scholar 

  19. E. M. Lohmeier-Vogel, K. T. Leung, H. Lee, J. T. Trevors, and H. J. Vogel (2001). Phosphorous-31 nuclear magnetic resonance study of the effect of pentachlorophenol (PCP) on the physiologies of PCP-degrading microorganism. Appl. Environ. Microbiol. 67, 3549-3356.

    Google Scholar 

  20. M. Sinensky (1974). Homeoviscous adaptation: A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 522-525.

    Google Scholar 

  21. T. J. Denich, L. A. Beaudette, H. Lee, and J. T. Trevors (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52, 149-182.

    Google Scholar 

  22. D. L. Bedard, R. Unterman, L. H. Bopp, M. J. Brennan, M. L. Haberl, and C. Johnson (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51, 761-788.

    Google Scholar 

  23. I. S. Kim, H. Lee, and J. T. Trevors (2001). Effects of 2,20,5,50-tetrachlorbiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol. Lett. 200, 17-24.

    Google Scholar 

  24. I. S. Kim, H. Lee, and J. T. Trevors (2002). Alterations in the fatty acid composition and fluidity of cell membranes affect the accumulation of PCB congener 2,20,5,50-tetrachlorobiphenyl by Ralstonia eutropha H850. J. Chem. Technol. Biotechnol. 77, 793-799.

    Google Scholar 

  25. M. Shinitzky and Y. Barenholz (1978). Fluidity parameters determined by fluorescence polarization. Biochim. Biophys. Acta. 515, 367-394.

    Google Scholar 

  26. M. C. Antunes-Madeira and V. M. C. Madeira (1989). Membrane fluidity as affected by the insecticide lindane. Biochim. Biophys. Acta. 982, 161-166.

    Google Scholar 

  27. M. C. Antunes-Madeira, R. A. Videira, and V. M. C. Madeira (1994). Effects of parathion on membrane organization and its implications for the mechanisms of toxicity. Biochim. Biophys. Acta. 1190, 149-154.

    Google Scholar 

  28. V. Borenstain and Y. Barenholz (1993). Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization. Chem. Phys. Lipids. 64, 117-127.

    Google Scholar 

  29. B. J. Litman and Y. Barenholz (1982). Fluorescent probe: Diphenyl-hexatriene. Methods. Enzymol. 81, 678-685.

    Google Scholar 

  30. J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy, Plenum, New York.

    Google Scholar 

  31. M. Adler and T. R. Tritton (1988). Fluorescence depolarization measurements in oriented membranes. Biophys. J. 53, 989-1005.

    Google Scholar 

  32. M. Sasser (1990). MIDI Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Inc., Newark, DE.

  33. A. Fabra de Peretti, R. Duffard, and A. M. Evangelista de Duffard (1992). Effects of 2,4-dichlorophenoxyacetic acid on Rhizobium sp. membrane fluidity. Arch. Environ. Contam. Toxicol. 23, 307-309.

    Google Scholar 

  34. M. R. Moya-Quiles, M. Munoz-Delgado, and C. J. Vidal (1995). Effect of the pyrethroid insecticide allethrin on membrane fluidity. Biochem. Mol. Biol. Int. 36, 1299-1308.

    Google Scholar 

  35. M. C. Antunes-Madeira and V. M. C. Madeira (1990). Membrane fluidity as affected by the organochlorine insecticide DDT. Biochim. Biophys. Acta. 1023, 469-474.

    Google Scholar 

  36. M. C. Antunes-Madeira, R. A. Videira, M. L. W. Kluppel, and V. M. C. Madeira (1995). Amiodarone effects on membrane organization evaluated by fluorescence polarization. Int. J. Cardiol. 48, 211-218.

    Google Scholar 

  37. M. M. Donato, A. S. Jurado, M. C. Antunes-Madeira, and V. M. C. Madeira (1997a). Bacillus stearothermophilus as a model to evaluate membrane toxicity of a lipophilic environmental pollutant (DDT). Arch. Environ. Contam. Toxicol. 33, 106-116.

    Google Scholar 

  38. M. M. Donato, M. C. Antunes-Madeira, A. S. Jurado, and V. M. C. Madeira (1997b). Effects of a lipophilic environmental pollutant (DDT) on the phospholipid and fatty acid contents of Bacillus stearothermophilus. Arch. Environ. Contam. Toxicol. 33, 341-349.

    Google Scholar 

  39. M. M. Donato, A. S. Jurado, M. C. Antunes-Madeira, and V. M. C. Madeira (2000). Membrane lipid composition of Bacillus stearother-mophilus as affected by lipophilic environmental pollutants: An approach to membrane toxicity assessment. Arch. Environ. Toxicol. 39, 145-153.

    Google Scholar 

  40. K. T. Leung, A. Watt, H. Lee, and J. T. Trevors (1997). Quantitative detection of pentachlorophenol-degrading Sphingomonas sp. UG30 in soil by a most-probable-number/polymerase chain reaction protocol. J. Microbiol. Methods 31, 59-66.

    Google Scholar 

  41. E. C. Weinbach and J. Garbus (1965). The interaction of uncoupling phenols with mitochondria and with mitochondrial protein. J. Biol. Chem. 240, 1811-1819.

    Google Scholar 

  42. C. L. Duxbury and J. E. Thompson (1987). Pentachlorophenol alters the molecular organization of membranes in mammalian cells. Arch. Environ. Contam. Toxicol. 16, 367-373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Trevors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denich, T.J., Beaudette, L.A., Cassidy, M.B. et al. Membrane Fluidity of the Pentachlorophenol-Mineralizing Sphingomonas sp. UG30. Journal of Fluorescence 13, 385–391 (2003). https://doi.org/10.1023/A:1026160721851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026160721851

Navigation