Skip to main content
Log in

Survival of a Novel Bacterium Acidiphilium symbioticum H8 under Thermal Stress

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

An acidophilic heterotrophic gram-negative Acidiphilium symbioticum strain H8 is an important bacterium possessing a high capacity for heavy metal binding. As these bacteria inhabit acidic mine regions they are subjected to occasional temperature stress; thus their membrane profile is very important. Cell morphology determined by scanning and transmission electron microscopy revealed the surface and internal adaptation of the organelles. Phosphatidyl ethanolamine, phosphatidyl inositol, and phosphatidic acid are the major phospholipids affected by growth temperature. The membrane fluidity in response to temperature stress was investigated by measuring fluorescence anisotropy using 1,6-diphenyl-1,3,5-hexatriene (DPH) as the probe. Significant changes in membrane fluidity revealed the transition temperature midpoints as 11 and 38°C. To maintain the optimum fluidity increasing the percentage of cis-vaccenic acid at suboptimal and palmitic acid at the upper cardinal temperature support the evidence of membrane remodeling in different growth temperatures. The protein profile from SDS-PAGE provided information about different polypeptide bands which may be responsible for the different metal binding abilities of the strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aldsworth, T.G., Sharman, R.L., and Dodd, C.E., Bacterial suicide through stress, Cell, Mol. Life Sci., 1999, vol. 56, pp. 378‒383.

    Article  CAS  PubMed  Google Scholar 

  2. Bakholdina, S., Sanina, N., and Krasikova, I., The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosi, Biochimie, 2004, vol. 86, pp. 875‒881.

    Article  CAS  PubMed  Google Scholar 

  3. Barker, H.A. and Kornberg, A., The structure of the adenosine triphosphate of Thiobacillus thiooxidans, J. Bacteri-ol., 1954, vol. 68, pp. 655‒661.

    Article  CAS  Google Scholar 

  4. Beveridge, T.J. and Graham, L.L., Surface layers of bacteria, Microbiol. Rev., 1991, vol. 55, pp. 684‒705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhattacharya, S., Chakrabarti, B.K., Das, A., Kundu, P.N., and Banerjee, P.C., Acidiphilium symbioticum sp. nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines, Can. J. Microbiol., 1991, vol. 37, pp. 78‒85.

    Article  Google Scholar 

  6. Bligh, E.G. and Dyer, W.J., A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911‒917.

    Article  CAS  PubMed  Google Scholar 

  7. Bohuszewicz, O., Liu, J., and Low, H.H., Membrane remodeling in bacteria, J. Struct. Biol., 2016, vol. 196, pp. 3‒14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, J.L., Ross, T., McMeekin, T.A., and Nichols, P.D., Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance, Int. J. Food Microbiol., 1997, vol. 37, pp. 163‒173.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, N.L., Barrett, S.R., Camakaris, J., Lee, B.T., and Rouch, D.A., Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004, Mol. Microbiol., 1995, vol. 17, pp. 1153‒1166.

    Article  CAS  PubMed  Google Scholar 

  10. Chakravarty, R. and Banerjee, P.C., Mechanism of cadmium binding on the cell wall of an acidophilic bacterium, Bioresour. Technol., 2012, vol. 108, pp. 176‒183.

    Article  CAS  PubMed  Google Scholar 

  11. Chakravarty, R. and Banerjee, P.C., Morphological changes in an acidophilic bacterium induced by heavy metals, Extremophiles, 2008, vol. 12, pp. 279‒284.

    Article  CAS  PubMed  Google Scholar 

  12. Davydova, L., Bakholdina, S., Barkina, M., Velansky, P., Bogdanov, M., and Sanina, N., Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis, Biochimie, 2016, vol. 123, pp. 103‒109.

    Article  CAS  PubMed  Google Scholar 

  13. Denich, T.J., Beaudette, L.A., Lee, H., and Trevors, J.T., Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, J. Microbiol. Methods, 2003, vol. 52, pp. 149‒182.

    Article  CAS  PubMed  Google Scholar 

  14. Dombek, K.M. and Ingram, L.O., Effects of ethanol on the Escherichia coli plasma membrane, J. Bacteriol., 1984, vol. 157, pp. 233‒239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dufourc, E.J., Smith, I.C.P., and Jarrell, H.C., The role of cyclopropane moieties in the lipid properties of biological membranes: a deuterium NMR structural and dynamical approach, Biochemistry, 1984, vol. 23, pp. 2300‒2309.

    Article  CAS  Google Scholar 

  16. Eisenberg, A.D. and Corner, T.R., Osmotic behavior of bacterial protoplasts: Temperature effects, J. Bacteriol., 1973, vol. 114, pp. 1177‒1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guiliani, N. and Jerez, C.A., Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2318‒2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasegawa, Y., Kawada, N., and Nosoh, Y., Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature, Arch. Microbiol., 1980, vol. 126, pp. 103‒108.

    Article  CAS  PubMed  Google Scholar 

  19. Heyde, M. and Portalier, R., Regulation of major outer membrane porin proteins of Escherichia coli K 12 by pH, Mol. Gen. Genet., 1987, vol. 208, pp. 511‒517.

    Article  CAS  PubMed  Google Scholar 

  20. Itoh, S., Iwaki, M., Wakao, N., Yoshizu, K., Aoki, A., and Tazaki, K., Accumulation of Fe, Cr and Ni metals inside cells of acidophilic bacterium Acidiphilium rubrum that produces Zn-containing bacteriochlorophyll a, Plant Cell Physiol., 1998, vol. 39, pp. 740‒744.

    Article  CAS  Google Scholar 

  21. Jorge, C.D., Borges, N., and Santos, H., A novel pathway for the synthesis of inositol phospholipids uses CDP-inositol as donor of the polar head group, Environ. Microbiol., 2015, vol. 17, pp. 2492—2504.

    Article  CAS  PubMed  Google Scholar 

  22. Kannan, N., Rao, A.S., and Nair, A., Microbial production of omega-3 fatty acids: an overview, J. Appl. Microbiol., 2021, vol. 131, pp. 2114—2130.

    Article  CAS  PubMed  Google Scholar 

  23. Kerger, B.D., Nichols, P.D., Antworth, C.P., Sand, W., Bock, E., Cox, J.C., Langworthy, T.A., and White, D.C., Signature fatty acids in the polar lipids of acid-producing Thiobacillus spp.: methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl and branched and normal monoenoic fatty acids, FEMS Microbiol. Lett., 1986, vol. 38, pp. 67‒77.

    Article  CAS  Google Scholar 

  24. Kishimoto, N., Kosako, Y., and Tano, T., Acidiphilium aminolytica sp. nov.: an acidophilc chemoorganotrophic bacterium isolated from acidic mineral environment, Curr. Microbiol., 1993, vol. 27, pp. 131‒136.

    Article  CAS  PubMed  Google Scholar 

  25. Liesegang, H., Lemke, K., Siddiqui, R.A., and Schlege, H.G., Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligene seutrophus CH34, J. Bacteriol., 1993, vol. 175, pp. 767‒778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265‒275.

    Article  CAS  PubMed  Google Scholar 

  27. Lundgren, D.G., Anderson, K.J., Remsen, C.C., and Mahoney, R.P., Culture, structure and physiology of the chemoautotrophic bacterium Ferrobacillus ferrooxidans, Develop. Ind. Microbiol., 1964, vol. 6, pp. 250‒257.

    Google Scholar 

  28. Mahapatra, N.R. and Banerjee, P.C., Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains, Lett. Appl. Microbiol., 1996, vol. 23, pp. 393‒397.

    Article  CAS  Google Scholar 

  29. Matlakowska, R., Skudlarska. E., and Skłodowska, A., The growth, ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate, Pol. J. Microbiol., 2006, vol. 55, pp. 203‒210.

    CAS  PubMed  Google Scholar 

  30. Matsuzawa, Y., Kanbe, T., Suzuki, J., and Hiraishi, A., Ultrastructure of the acidophilic aerobic photosynthetic bacterium Acidiphilium rubrum, Curr. Microbiol., 2000, vol. 40, pp. 398‒401.

    Article  CAS  PubMed  Google Scholar 

  31. Murínová, S. and Dercová, K., Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane, Int. J. Microbiol., 2014, vol. 2014, pp. 1‒16.

    Article  Google Scholar 

  32. Mykytczuk, N.C.S., Trevors, J.T., Leduc, L.G., and Ferroni, G.D., Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress, Prog. Biophys. Mol. Biol., 2007, vol. 95, pp. 60‒82.

    Article  CAS  PubMed  Google Scholar 

  33. Neumann, G., Veeranagouda, Y., Karegoudar, T.B., Sahin, Ö., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U., and Heipieper, H.J., Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size, Extremophiles, 2005, vol. 9, pp. 163‒168.

    Article  CAS  PubMed  Google Scholar 

  34. Nies, D.H., Efflux mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev., 2003, vol. 27, pp. 313‒339.

    Article  CAS  PubMed  Google Scholar 

  35. Pal, S., Banik, S.P., Ghorai, S., Chowdhury, S., and Khowala, S., Purification and characterization of a thermostable intra-cellular beta-glucosidase with trans glycosylation properties from filamentous fungus Termitomyces clypeatus, Bioresour. Technol., 2010, vol. 101, pp. 2412‒2420.

    Article  CAS  PubMed  Google Scholar 

  36. Peng, H., Yi, L., Zhang, X., Xiao, Y., Gao, Y., and He, C., Changes in the membrane fatty acid composition in Anoxybacillus flavithermus sub sp. yunnanensis E13 T as response to solvent stress, Arch. Microbiol., 2017, vol. 199, pp. 1‒8.

    Article  CAS  PubMed  Google Scholar 

  37. Pidcock, E. and Moore, G.R., Structural characteristics of protein binding sites for calcium and lanthanide ions, J. Bi-ol. Inorg. Chem., 2001, vol. 6, pp. 479‒489.

    Article  CAS  Google Scholar 

  38. Rodríguez, M., Campos, S., and Gómez-Silva, B., Studies on native strains of Thiobacillus ferrooxidans. III. Studies on the surface of Thiobacillus ferrooxidans. Characterization of the lipopolysaccharide and some proteins, Biotechnol. Appl. Biochem., 1986, vol. 8, pp. 292‒299.

    Google Scholar 

  39. Shinitzky, M. and Barenholz, Y., Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta, 1978, vol. 515, pp. 367‒394.

    Article  CAS  PubMed  Google Scholar 

  40. Singh, S.K., Singh, A., and Banerjee, P.C., Plasmid encoded AcrAB–TolC tripartite multidrug-efflux system in Acidiphilium symbioticum H8, Curr. Microbiol., 2010, vol. 61, pp. 163‒168.

    Article  CAS  PubMed  Google Scholar 

  41. Sohlenkamp, C. and Geiger, O., Bacterial membrane lipids: diversity in structures and pathways, FEMS Microbiol. Rev., 2016, vol. 40, pp. 133‒159.

    Article  CAS  PubMed  Google Scholar 

  42. Sohlenkamp, C., L’opez-Lara, I.M., and Geiger, O., Biosynthesis of phosphatidylcholine in bacteria, Prog. Lipid. Res., 2003, vol. 42, pp. 115‒162.

    Article  CAS  PubMed  Google Scholar 

  43. Souza, K.A., Kostiw, L.L., and Tyson, B.J., Alteration in normal fatty acid composition in a temperature sensitive mutant of a thermophilic Bacillus, Arch. Microbiol., 1974, vol. 97, pp. 89‒102.

    Article  CAS  PubMed  Google Scholar 

  44. Spratt, B.G., Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12, Proc. Natl. Acad. Sci. U. S. A., 1975, vol. 72, pp. 2999‒3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suutari, M. and Laakso, S., Microbial fatty acids and thermal adaptation, Crit. Rev. Microbiol., 1994, vol. 20, pp. 285‒328.

    Article  CAS  PubMed  Google Scholar 

  46. Talaro, K.P. and Talaro, A., Foundations in Microbiology, McGraw Hill, 1999, 3rd ed.

    Google Scholar 

  47. Wada, M., Fukunaga, N., and Sasaki, S., Aerobic synthesis of unsaturated fatty acids in a psychrotrophic bacterium, Pseudomonas sp. strain E-3, having two mechanisms for unsaturated fatty acid synthesis, J. Gen. Appl. Microbiol., 1991, vol. 37, pp. 355 ‒362.

    Article  CAS  Google Scholar 

  48. Wakao, N., Nagasawa, N., Matsuura, T., Matsukura, H., Matsumoto, T., Hiraishi, A., Sakurai, Y., and Shiota, H., Acidiphilium multivorum sp. nov., an acidophilic, chemoorganotrophic bacterium from pyritic acid mine drainage, J. Gen. Appl. Microbiol., 1994, vol. 40, pp. 143‒159.

    Article  CAS  Google Scholar 

  49. Wichlacz, P.L., Unz, R.F., and Langworthy, T.A., Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 197‒201.

    Article  Google Scholar 

  50. Wisdom, C. and Welker, N.E., Membranes of Bacillus stearothermophilus: factors affecting protoplast stability and thermostability of alkaline phosphatase and reduced nicotin amide adenine dinucleotide oxidase, J. Bacteriol., 1973, vol. 114, pp. 1336−1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao, J., and Rock, C.O., Phosphatidic acid synthesis in bacteria, Biochim. Biophys. Acta, 2013, vol. 1831, pp. 495—502.

    Article  CAS  PubMed  Google Scholar 

  52. Yasuda, M., Oyaizu, H., Yamagishi, A., and Oshima, T., Morphological variation of new Thermoplasma acidophilum isolates from Japanese hot springs, Appl. Environ. Mic-robiol., 1995, vol. 61, pp. 3482‒3485.

    Article  CAS  Google Scholar 

  53. Young, K.D., The selective value of bacterial shape, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp 660‒703.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the help of Dr. S. Cha-kraborty, University Science Instrumentation Centre, Burdwan University, West Bengal, for providing SEM facilities and Dr. T.C. Nag, All India Institute of Medical Science, New Delhi for providing TEM facilities. Many thanks are also addressed to Dr. A. Sen, Indian Institute of Chemical Biology, Kolkata, for his support in providing a GC-MS facility. R. Chakravarty acknowledges the Research Fellowship provided by the Council of Scientific and Industrial Research (CSIR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chakravarty.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, R., Banerjee, P.C. Survival of a Novel Bacterium Acidiphilium symbioticum H8 under Thermal Stress. Microbiology 92, 534–544 (2023). https://doi.org/10.1134/S0026261722602457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602457

Keywords:

Navigation