Skip to main content
Log in

Development of an integrated process for electrochemical reaction and chromatographic SMB-separation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new continuous process combining electrochemical reaction and chromatographic simulated-moving-bed (SMB) separation is presented. To demonstrate the potential of process integration, this reactor concept is applied to the direct electrochemical production of arabinose by means of simulation. Experimentally verified models of ‘reactor’ and ‘column’ units are combined with a model of the electrochemical SMB-reactor. These process units are characterized individually and their model parameters are discussed. The electrochemical reaction inside the microreactor can be described by a series reaction, which has an impact on the design of the integrated process: as the reaction should take place in areas of the SMB-process with maximum educt concentration, the reactors are switched ‘on’ and ‘off’ during operation. The integrated process shows interaction between the reaction and the separation to diminish side reactions. Case studies prove the theoretical feasibility of the integrated process. Compared to a conventional process with a reactor followed by a SMB-separation, higher yields can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Krishna, Chem. Eng. Sci. 57 (2002) 1491.

    Google Scholar 

  2. R. Ditz, M. Schulte and J. Strube, Curr. Opin. Drug. Discovery Develop. 1 (1998) 264.

    Google Scholar 

  3. M. Schulte and J. Strube, J. Chromatogr. A 906 (2001) 399.

    Google Scholar 

  4. S.H. Langer and J.E. Patton, in J.H. Purnell (Ed.), 'New Developments in Gas Chromatography' (Wiley-Interscience, 1973) p. 293.

  5. J. Fricke, H. Schmidt-Traub and M. Kawase, in 'Ullmann's Encyclopedia of Industrial Chemistry' (WILEY-VCH, 6th edn., 2000).

  6. F. Lode, M. Houmard, C. Migliorini, M. Mazzotti and M. Morbidelli, Chem. Eng. Science 56 (2001) 269.

    Google Scholar 

  7. R.W. Carr and H. Dandekar, in S. Kulprathipanja (Ed.), 'Reaction Separation Processes' (Taylor & Francis, New York, 2002), pp. 115-154.

    Google Scholar 

  8. H. Loewe, M. Kuepper and A. Ziogas, German patent DE 19841302A1, European patent EP 99/06684.

  9. H. Loewe, M. Kuepper and A. Ziogas, in W. Ehrfeld (Ed.), 'Microreaction Technology: Industrial Prospects', Proceeding of the third International Conference on Microreaction Technology (IMRET3), (Springer-Verlag, Berlin, 2000), p. 126-136.

    Google Scholar 

  10. W. Ehrfeld, V. Hessel and H. Löwe, 'Microreactors - New Technologies for Modern Chemistry' (WILEY-VCH, 1st edn. 2000).

  11. D.M. Ruthven and C.B. Ching, Chem. Eng. Sci. 44 (1989) 1011.

    Google Scholar 

  12. F. Charton and R.M. Nicoud, J. Chromatogr. A 702 (1995) 97.

    Google Scholar 

  13. M. Mazotti, G. Storti and M. Morbidelli, J. Chromatogr. 769 (1997) 3.

    Google Scholar 

  14. D.B. Broughton, US patent 2.985.589 (1961).

  15. G. Ganetsos and P.E. Barker (Eds), Preparative and Production Scale Chromatography (Marcel Dekker, New York 1993).

    Google Scholar 

  16. D.B. Broughton, Chem. Eng. Prog. 64 (1968) 60.

    Google Scholar 

  17. D.B. Broughton, H.J. Bieser, R.C. Berg and E.D. Conell, Suc. Belg. 96 (1977) 155.

    Google Scholar 

  18. F.E. Woodard and C.N. Reilley, in V. Yeager, J.O.M. Bockris, P.P. Conway and S.T. Sarangbani (Eds), 'Comprehensive. Treatise of Electrochemistry' Vol. 9 (Plenum Press, New York, 1984), pp. 353-392.

    Google Scholar 

  19. M. Küpper, V. Hessel and H. Löwe, Electrochim. Acta (in press).

  20. V. Jiricny and V. Stanek, J. Appl. Electrochem 24 (1994) 930.

    Google Scholar 

  21. V. Jiricny and V. Stanek, Collect. Czech. Chem. Commun. 60 (1995) 863.

    Google Scholar 

  22. G. Pezzatini, H. Wie, R. Guidelli and F. Pergola, Electroanalysis 4 (1992) 129.

    Google Scholar 

  23. F. Pergola, L. Nucci, G. Pezzatini, H. Wie and R. Guidelli, Electrochim. Acta 39 (1995) 1415.

    Google Scholar 

  24. C. Vallieres and M. Matlosz, J. Electrochem. Soc. 146 (1999) 2933.

    Google Scholar 

  25. M. Baizer and H. Lund (Eds), Organic Electrochemistry (Marcel Dekker, New York, 1983).

    Google Scholar 

  26. W. Dobler, H. Ernst and J. Paus, German patent DE 3622643 A1 (1988).

  27. S.F. Chung and C.Y. Wen, AIChE J. 14, No. 6 (1968) 857.

    Google Scholar 

  28. M. Küpper, V. Hessel and H. Löwe, Proceedings of the 53rd Annual Meeting of the International Society of Electrochemistry (Du¨sseldorf, Germany, 15-20 September 2002), p. 238.

    Google Scholar 

  29. I. Molnar-Perl, J. Chromatogr. A 891 (2000) 1.

    Google Scholar 

  30. U. Altenho¨ner, M. Meurer, J. Strube and H. Schmidt-Traub, J. Chromatogr. A 769 (1997) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schmidt-Traub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M., Schmidt-Traub, H., Ditz, R. et al. Development of an integrated process for electrochemical reaction and chromatographic SMB-separation. Journal of Applied Electrochemistry 33, 939–949 (2003). https://doi.org/10.1023/A:1025873425123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025873425123

Navigation