Skip to main content
Log in

Photochemical Transfection: A Technology for Efficient Light-Directed Gene Delivery

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Most synthetic gene delivery vectors are taken up in the cell by endocytosis, and inefficient escape of the transgene from endocytic vesicles often is a major barrier for gene transfer by such vectors. To improve endosomal release we have developed a new technology, named photochemical internalization (PCI). PCI is based on photochemical reactions initiated by photosensitizing compounds localized in endocytic vesicles, inducing rupture of these vesicles upon light exposure. PCI constitutes an efficient light-inducible gene transfer method in vivo, which potentially can be developed into a site-specific method for gene delivery in in vivo gene therapy. In this paper the principle behind the PCI technology and the effect of PCI on transfection with different synthetic gene delivery vectors are reviewed. PCI treatment by the photosensitizer aluminum phthalocyanine (AlPcS2a ) strongly improves transfection mediated by cationic polymers (e.g., poly-L-lysine and polyethylenimine), while the effect on transfection with cationic lipids is more variable. The timing of the light treatment relative to the transfection period was also important, indicating that release of the DNA from early endosomes is important for the outcome of PCI-induced transfection. The possibilities of using PCI as a technology for efficient, site-specific gene delivery in in vivo gene therapy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Anderson WF. Nature 1998; 392:25–30.

    Google Scholar 

  2. Verma IM, Somia N. Nature 1997; 389:239–242.

    Google Scholar 

  3. Greber UF, Willetts M, Webster P et al. Cell 1993; 75:477–486.

    Google Scholar 

  4. Leopold PL, Ferris B, Grinberg I et al. Hum Gene Ther 1998; 9:367–378.

    Google Scholar 

  5. Zabner J, Fasbender AJ, Moninger T et al. J Biol Chem 1995; 270:18997–19007.

    Google Scholar 

  6. Tseng WC, Haselton FR, Giorgio TD. J Biol Chem 1997; 272:25641–25647.

    Google Scholar 

  7. Prasmickaite L, Høgset A, Tjelle TE et al. J Gene Med 2000; 2:477–488.

    Google Scholar 

  8. Wilke M, Fortunati E, Van den BM et al. Gene Ther 1996; 3:1133–1142.

    Google Scholar 

  9. Pouton CW. Adv Drug Deliv Rev 1998; 34:51–64.

    Google Scholar 

  10. Luo D, Saltzman WM. Nat Biotechnol 2000; 18:33–37.

    Google Scholar 

  11. Ogris M, Steinlein P, Kursa M et al. Gene Ther 1998; 5:1425–1433.

    Google Scholar 

  12. Pouton CW, Lucas P, Thomas BJ et al. J Control Release 1998; 53:289–299.

    Google Scholar 

  13. De Smedt SC, Demeester J, Hennink WE. Pharm Res 2000; 17:113–126.

    Google Scholar 

  14. Zhou X, Huang L. Biochim Biophys Acta 1994; 1189:195–203.

    Google Scholar 

  15. Zelphati O, Szoka FC, Jr. Pharm Res 1996; 13:1367–1372.

    Google Scholar 

  16. Pouton CW, Seymour LW. Adv Drug Deliv Rev 1998; 34:3–19.

    Google Scholar 

  17. Cotten M, Langle-Rouault F, Kirlappos H et al. Proc Natl Acad Sci USA 1990; 87:4033–4037.

    Google Scholar 

  18. Wagner E, Zatloukal K, Cotten M et al. Proc Natl Acad Sci USA 1992; 89:6099–6103.

    Google Scholar 

  19. Midoux P, Mendes C, Legrand A et al. Nucleic Acids Res 1993; 21:871–878.

    Google Scholar 

  20. Wolfert MA, Seymour LW. Gene Ther 1998; 5:409–414.

    Google Scholar 

  21. Erbacher P, Roche AC, Monsigny M et al. Exp Cell Res 1996; 225:186–194.

    Google Scholar 

  22. Curiel DT, Agarwal S, Wagner E et al. Proc Natl Acad Sci USA 1991; 88:8850–8854.

    Google Scholar 

  23. Cristiano RJ, Smith LC, Woo SL. Proc Natl Acad Sci USA 1993; 90:2122–2126.

    Google Scholar 

  24. Harbottle RP, Cooper RG, Hart SL et al. Hum Gene Ther 1998; 9:1037–1047.

    Google Scholar 

  25. Zauner W, Kichler A, Schmidt W et al. BioTechniques 1996; 20:905–913.

    Google Scholar 

  26. Zauner W, Kichler A, Schmidt W et al. Exp Cell Res 1997; 232:137–145.

    Google Scholar 

  27. Felgner JH, Kumar R, Sridhar CN et al. J Biol Chem 1994; 269:2550–2561.

    Google Scholar 

  28. Farhood H, Serbina N, Huang L. Biochim Biophys Acta 1995; 1235:289–295.

    Google Scholar 

  29. Wrobel I, Collins D. Biochim Biophys Acta 1995; 1235:296–304.

    Google Scholar 

  30. Boussif O, Lezoualc'h F, Zanta MA et al. Proc Natl Acad Sci USA 1995; 92:7297–7301.

    Google Scholar 

  31. Zelphati O, Szoka FC, Jr. Proc Natl Acad Sci USA 1996; 93:11493–11498.

    Google Scholar 

  32. Xu Y, Szoka FC, Jr. Biochemistry 1996; 35:5616–5623.

    Google Scholar 

  33. Berg K, Selbo PK, Prasmickaite L et al. Cancer Res 1999; 59:1180–1183.

    Google Scholar 

  34. Moan J, Sommer S. Cancer Res 1985; 45:1608–1610.

    Google Scholar 

  35. Weishaupt KR, Gomer CJ, Dougherty TJ. Cancer Res 1976; 36:2326–2329.

    Google Scholar 

  36. Jori G, Spikes JD. in Topics in Photomedicine, KC Smith (ed.), Plenum Press, New York, 1984, pp.183–318.

    Google Scholar 

  37. Moan J, Berg K. Photochem Photobiol 1991; 53:549–553.

    Google Scholar 

  38. Pass HI. J Natl Cancer Inst 1993; 85:443–456.

    Google Scholar 

  39. Henderson B, Dougherty TJ. Photochem Photobiol 1992; 55:145–157.

    Google Scholar 

  40. Dougherty TJ, Gomer CJ, Henderson BW et al. J Natl Cancer Inst 1998; 90:889–905.

    Google Scholar 

  41. Moan J, Berg K, Kvam E et al. CIBA Found Symp 1989; 146:95–107.

    Google Scholar 

  42. Berg K, Bommer JC, Winkelman JW et al. Photochem Photobiol 1990; 52:775–781.

    Google Scholar 

  43. Berg K, Western A, Bommer JC et al. Photochem Photobiol 1990; 52:481–487.

    Google Scholar 

  44. Prasmickaite L, Høgset A, Berg K. Photochem Photobiol 2001; 73:388–395.

    Google Scholar 

  45. Berg K, Moan J. Int J Cancer 1994; 59:814–822.

    Google Scholar 

  46. Peng Q, Nesland JM, Madslien K et al. SPIE 1996; 2628:102–113.

    Google Scholar 

  47. Moan J, Berg K, Bommer JC et al. Photochem Photobiol 1992; 56:171–175.

    Google Scholar 

  48. Maman N, Dhami S, Phillips D et al. Biochim Biophys Acta 1999; 1420:168–178.

    Google Scholar 

  49. Moan J, Berg K, Anholt H et al. Int J Cancer 1994; 58:865–870.

    Google Scholar 

  50. Wilson PD, Firestone RA, Lenard J. J Cell Biol 1987; 104:1223–1229.

    Google Scholar 

  51. Miller DK, Griffiths E, Lenard J et al. J Cell Biol 1983; 97:1841–1851.

    Google Scholar 

  52. Högset A, Prasmickaite L, Tjelle TE et al. Hum Gene Ther 2000; 11:869–880.

    Google Scholar 

  53. Berg K, Sandvig K, Moan J. Patent 1996; PCT/NO95/00149.

  54. Prasmickaite L, Högset A, Berg K. In Methods in Molecular Medicine, Vol. 69: Gene Therapy Protocols, 2nd edn. JR Morgan R, Humana Press, Totowa, 2000; pp. 123–135.

    Google Scholar 

  55. Selbo PK, Sivam G, Fodstad ø et al. Int J Cancer 2000; 87:853–859.

    Google Scholar 

  56. Selbo PK, Sandvig K, Kirveliene V et al. Biochim Biophys Acta 2000; 1475:307–313.

    Google Scholar 

  57. Selbo PK, Sivam G, Fodstad ø et al. Int J Cancer 2001; 92:761–766.

    Google Scholar 

  58. Clague MJ, Urbé S, Aniento F et al. J Biol Chem 1994; 269:21–24.

    Google Scholar 

  59. Van Deurs B, Holm PK, Sandvig K. Eur J Cell Biol 1996; 69:343–350.

    Google Scholar 

  60. Wheeler CJ, Sukhu L, Yang G et al. Biochim Biophys Acta 1996; 1280:1–11.

    Google Scholar 

  61. Luna MC, Wong S, Gomer CJ. Cancer Res 1994; 54:1374–1380.

    Google Scholar 

  62. Ryter SW, Gomer CJ. Photochem Photobiol 1993; 58:753–756.

    Google Scholar 

  63. Boom R, Sol CJ, Minnaar RP et al. J Gen Virol 1988; 69:1179–1193.

    Google Scholar 

  64. Bruening W, Giasson B, Mushynski W et al. Nucleic Acids Res 1998; 26:486–489.

    Google Scholar 

  65. Tang D-C, Jennelle RS, Shi Z et al. Hum Gene Ther 1997; 8:2117–2124.

    Google Scholar 

  66. Francis MA, Rainbow AJ. Photochem Photobiol 2000; 72:554–561.

    Google Scholar 

  67. Curiel DT. Ann NY Acad Sci 1999; 886:158–171.

    Google Scholar 

  68. Chopp M, Madigan L, Dereski M et al. Photochem Photobiol 1996; 64:707–711.

    Google Scholar 

  69. Dachs GU, Dougherty GJ, Stratford IJ et al. Oncol Res 1997; 9:313–325.

    Google Scholar 

  70. Zauner W, Ogris M, Wagner E. Adv Drug Deliv Rev 1998; 30:97–113.

    Google Scholar 

  71. Godbey WT, Wu KK, Mikos AG. J Control Release 1999; 60:149–160.

    Google Scholar 

  72. Sudimack J, Lee RJ. Adv Drug Deliv Rev 2000; 41:147–162.

    Google Scholar 

  73. Miller N, Whelan J. Hum Gene Ther 1997; 8:803–815.

    Google Scholar 

  74. Nettelbeck DM, Jérôme V, Müller R. Trends Genet 2000; 16:174–181.

    Google Scholar 

  75. Luna MC, Ferrario A, Wong S et al. Cancer Res 2000; 60:1637–1644.

    Google Scholar 

  76. Evans S, Matthews W, Perry R et al. J Natl Cancer Inst 1990; 82:34–39.

    Google Scholar 

  77. Kick G, Messer G, Goetz A et al. Cancer Res 1995; 55:2373–2379.

    Google Scholar 

  78. Gomer CJ, Ryter SW, Ferrario A et al. Cancer Res 1996; 56:2355–2360.

    Google Scholar 

  79. de Vree WJ, Essers MC, Koster JF et al. Cancer Res 1997; 57:2555–2558.

    Google Scholar 

  80. Todryk S, Melcher AA, Hardwick N et al. J Immunol 1999; 163:1398–1408.

    Google Scholar 

  81. Todryk SM, Melcher AA, Dalgleish AG et al. Immunology 2000; 99:334–337.

    Google Scholar 

  82. Moan J, Berg K. Photochem Photobiol 1992; 55:931–948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Høgset, A., Prasmickaite, L., Hellum, M. et al. Photochemical Transfection: A Technology for Efficient Light-Directed Gene Delivery. Somat Cell Mol Genet 27, 97–113 (2002). https://doi.org/10.1023/A:1022979806314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022979806314

Keywords

Navigation