Skip to main content
Log in

Smooth Transformation of the Generalized Minimax Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the generalized minimax problem, that is, the problem of minimizing a function φ(x)=F(g 1(x),...,g m(x)), where F is a smooth function and each g i is the maximum of a finite number of smooth functions. We prove that, under suitable assumptions, it is possible to construct a continuously differentiable exact barrier function, whose minimizers yield the minimizers of the function φ. In this way, the nonsmooth original problem can be solved by usual minimization techniques for unconstrained differentiable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DEMYANOV, V. F., and RUBINOV, A. M., Quasidifferential Calculus, Optimization Software, New York, New York, 1986.

    Google Scholar 

  2. BERTSEKAS, D. P., Nondifferentiable Optimization via Approximation, Mathematical Programming Study, Vol. 3, pp. 1–25, 1975.

    Google Scholar 

  3. AUSLENDER, A., Minimisation de Fonctions Localement Lipschitziennes: Applications a la Programmation Miconvexe, Midifferentiable, Nonlinear Programming 3, Edited by O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, New York, pp. 429–460, 1978.

    Google Scholar 

  4. PAPAVASSILOPOULOS, G., Algorithms for a Class of Nondifferentiable Problems, Journal of Optimization Theory and Applications, Vol. 34, pp. 41–82, 1981.

    Google Scholar 

  5. BEN-TAL, A., and ZOWE, J., Necessary and Sufficient Optimality Conditions for a Class of Nonsmooth Minimization Problems, Mathematical Programming, Vol. 24, pp. 70–91, 1982.

    Google Scholar 

  6. KIWIEL, K. C., A Quadratic Approximation Method for Minimizing a Class of Quasidifferentiable Functions, Numerische Mathematik, Vol. 45, pp. 411–430, 1984.

    Google Scholar 

  7. LEMARECHAL, C., An Extension of the Davidon Method to Nondifferentiable Problems, Mathematical Programming Study, Vol. 3, pp. 95–109, 1975.

    Google Scholar 

  8. WOLFE, P., A Method of Conjugate Subgradients for Minimizing Nondifferentiable Convex Functions, Mathematical Programming Study, Vol. 3, pp. 145–173, 1975.

    Google Scholar 

  9. MIFFLIN, R., An Algorithm for Constrained Optimization with Semismooth Functions, Mathematics of Operations Research, Vol. 2, pp. 191–207, 1977.

    Google Scholar 

  10. GAUDIOSO, M., and MONACO, M. F., A Bundle-Type Approach to the Unconstrained Minimization of Convex Nonsmooth Functions, Mathematical Programming, Vol. 23, pp. 216–226, 1982.

    Google Scholar 

  11. LEMARECHAL, C., Numerical Experiments in Nonsmooth Optimization, Progress in Nondifferentiable Optimization, Edited by E. A. Nurminskii, IIASA Proceedings, Laxenburg, Austria, pp. 61–84, 1982.

    Google Scholar 

  12. SHOR, N. Z., Minimization Methods for Nondifferentiable Functions, Springer Verlag, Berlin, Germany, 1985.

    Google Scholar 

  13. KIWIEL, K. C., Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, Vol. 1133, 1985.

    Google Scholar 

  14. POLAK, E., Basics of Minimax Algorithms, Nonsmooth Optimization and Related Topics, Edited by F. H. Clarke, V. F. Demyanov, and F. Giannessi, Plenum Press, New York, New York, pp. 343–369, 1989.

    Google Scholar 

  15. SCHRAMM, H., and ZOWE, J., A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results, Report 206, DFG-Schwerpunktprogramms, Anwendungsbezogene Optimierung und Steuerung, Universitat Bayreuth, Bayreuth, Germany, 1990.

    Google Scholar 

  16. POLAK, E., MAYNE, D. H., and HIGGINS, J. E., Superlinearly Convergent Algorithm for Min-Max Problems, Journal of Optimization Theory and Applications, Vol. 69, pp. 407–439, 1991.

    Google Scholar 

  17. MADSEN, K., Minimization of Nonlinear Approximation Functions, PhD Thesis, Technical University of Denmark, Lyngby, Denmark, 1985.

    Google Scholar 

  18. DI PILLO, G., Exact Penalty Methods, Algorithms for Continuous Optimization: The State of the Art, Edited by E. Spedicato, Kluwer, Dordrecht, Netherlands, pp. 209–253, 1994.

    Google Scholar 

  19. DI PILLO, G., GRIPPO, L., and LUCIDI, S., A Smooth Method for the Finite Minimax Problem, Mathematical Programming, Vol. 60, pp. 187–214, 1993.

    Google Scholar 

  20. GLAD, T., and POLAK, E., A Multiplier Method with Automatic Limitation of Penalty Growth, Mathematical Programming, Vol. 17, pp. 140–155, 1979.

    Google Scholar 

  21. LUCIDI, S., New Results on a Continuously Differentiable Exact Penalty Function, SIAM Journal on Optimization, Vol. 2, pp. 558–574, 1992.

    Google Scholar 

  22. POLAK, E., On the Global Stabilization of Locally Convergent Algorithms, Automatica, Vol. 12, pp. 337–342, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pillo, G., Grippo, L. & Lucidi, S. Smooth Transformation of the Generalized Minimax Problem. Journal of Optimization Theory and Applications 95, 1–24 (1997). https://doi.org/10.1023/A:1022627226891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022627226891

Navigation