Skip to main content
Log in

On global minimizers of quadratic functions with cubic regularization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we analyze some theoretical properties of the problem of minimizing a quadratic function with a cubic regularization term, arising in many methods for unconstrained and constrained optimization that have been proposed in the last years. First we show that, given any stationary point that is not a global solution, it is possible to compute, in closed form, a new point with a smaller objective function value. Then, we prove that a global minimizer can be obtained by computing a finite number of stationary points. Finally, we extend these results to the case where stationary conditions are approximately satisfied, discussing some possible algorithmic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bellavia, S., Morini, B.: Strong local convergence properties of adaptive regularized methods for nonlinear least squares. IMA J. Numer. Anal. 35(2), 947–968 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput. Optim. Appl. 58(2), 323–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianconcini, T., Sciandrone, M.: A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques. Optim. Methods Softw. 31(5), 1008–1035 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60(1), 35–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, P.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program. 163(1–2), 359–368 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. 127(2), 245–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function-and derivative-evaluation complexity. Math. Program. 130(2), 295–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cartis, C., Gould, N.I.M., Toint, P.L.: An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity. IMA J. Numer. Anal. 32(4), 1662–1695 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dussault, J.P.: Simple unified convergence proofs for the trust-region and a new ARC variant. Tech. rep., University of Sherbrooke, Sherbrooke, Canada (2015)

  12. Gould, N.I.M., Porcelli, M., Toint, P.L.: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53(1), 1–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Griewank, A.: The modification of Newtons method for unconstrained optimization by bounding cubic terms. Tech. Rep. NA/12 (1981)

  15. Lucidi, S., Palagi, L., Roma, M.: On some properties of quadratic programs with a convex quadratic constraint. SIAM J. Optim. 8(1), 105–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nesterov, Y.: Cubic regularization of Newton’s method for convex problems with constraints. Tech. Rep. 39, CORE (2006)

  17. Nesterov, Y.: Accelerating the cubic regularization of Newtons method on convex problems. Math. Program. 112(1), 159–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weiser, M., Deuflhard, P., Erdmann, B.: Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Optim. Methods Softw. 22(3), 413–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cristofari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristofari, A., Dehghan Niri, T. & Lucidi, S. On global minimizers of quadratic functions with cubic regularization. Optim Lett 13, 1269–1283 (2019). https://doi.org/10.1007/s11590-018-1316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1316-0

Keywords

Navigation