Skip to main content
Log in

Galvanostatic anodization of pure Al in some aqueous acid solutions Part I: Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The growth kinetics of anodic films formed on the surface of high purity Al by anodization under galvanostatic conditions at current densities in the range 5–75 mA cm−2 in thermostatically controlled and vigorously stirred solutions of chromic, sulfuric, phosphoric, citric, tartaric and oxalic acids at different temperatures, were studied. It has been shown that chromic acid solution produces a typical barrier type oxide growth at any given temperature, while the specific kinetic curve representing the combined barrier/porous type film growth is observed when the anodization process is carried out in a nonstirred chromic acid solution. The oxide growth in the rest of the anodizing solutions occurs in different ways depending on the bath temperature. Barrier oxide growth is observed at temperatures lower than 30 °C. Above this temperature, combined barrier/porous oxide growth is observed. In all cases, the slope of the linear part of the potential against time curves, and therefore the rate of barrier oxide growth, increases with increasing anodizing current density and acid concentration, while it decreases with increase in temperature. The composition and surface morphology of the anodic films have been studied by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Despic and V.P. Parkhutike, Electrochemistry of aluminium in aqueous solutions and physics of its anodic oxide, in J.O.'M. Bockris, B.E. Conway and R.M. White (Eds), ‘Modern Aspects of Electrochemistry’ Vol. 20 (Plenum Press, New York, 1989), p. 397.

    Google Scholar 

  2. S. Ono, S. Chiaki and T. Sato, J. Met. Finish. Soc. Jpn. 26 (1975) 26.

    Google Scholar 

  3. Y. Liu, R.S. Alwitt and K. Shimizu, J. Electrochem. Soc. 147 (2000) 1382.

    Google Scholar 

  4. G. Patermarakis and N. Papandreadis, Electrochim. Acta 38 (1993) 2351.

    Google Scholar 

  5. G. Patermarakis and K. Moussoutzanis, J. Electrochem. Soc. 142 (1995) 737.

    Google Scholar 

  6. V.P. Parkhutik, J.M. Albella, Yu.E. Makushok, I. Montero, J.M. Martinez-Duart and V.I. Shershulskii, Electrochim. Acta 35 (1990) 955.

    Google Scholar 

  7. V.P. Parkhutik, V.T. Belov and M.A. Chernyckh, Electrochim. Acta 35 (1990) 961.

    Google Scholar 

  8. A.T. Shawaqfeh and R.E. Baltus, J. Electrochem. Soc. 145 (1998) 2699.

    Google Scholar 

  9. K. Shimizu, R.S. Alwitt and Y. Liu, J. Electrochem. Soc. 147 (2000) 1388.

    Google Scholar 

  10. H. Uchi, T. Kanno and R.S. Alwitt, J. Electrochem. Soc. 148 (2001) B17.

    Google Scholar 

  11. Th. Skoulikidis and G. Patermarakis, Aluminium 65 (1989) 185.

    Google Scholar 

  12. G. Patermarakis and C. Pavlidou, J. Catal. 147 (1994) 140.

    Google Scholar 

  13. J.M. Albella, I. Montero and J.M. Martinez-Duart, Electrochim. Acta 32 (1987) 255.

    Google Scholar 

  14. M.A. Paez, T.M. Foong, C.T. NI, G.E. Thompson, K. Shimizu, H. Habazaki, P. Skeldon and G.C. Wood, Corros. Sci. 38 (1996) 59.

    Google Scholar 

  15. H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, X. Zhou, J. De Leat and G.C. Wood, Corros. Sci. 39 (1997) 719.

    Google Scholar 

  16. F. Brown and W.D. Mackintosh, J. Electrochem. Soc. 148 (2001) 1096.

    Google Scholar 

  17. G.E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S.H. Han and G.C. Wood, Philos. Mag. B 55 (1987) 651.

    Google Scholar 

  18. A.T. Fromhold and R.G. Fromhold, in C.H. Bamford (Ed.), ‘Comprehensive Chemical Kinetics', Vol. 21 (Elsevier, Amsterdam, 1984), p. 1.

    Google Scholar 

  19. G.E. Thompson and G.C. Wood, in J.C. Scully (Ed.), ‘Treatise on Materials Science and Technology', Vol. 23 (Academic Press, New York, 1983), p. 205.

    Google Scholar 

  20. G. Patermarakis and D. Tzouvelekis, Electrochim. Acta 39 (1991) 2419.

    Google Scholar 

  21. C. Cherki and J. Siejka, J. Electrochem. Soc. 120 (1973) 784.

    Google Scholar 

  22. J.P. O'Sullivan and G.C. Wood, Proc. R. Soc. Lond. A. 317 (1970) 511.

    Google Scholar 

  23. V.I. Nefedov, ‘X-ray Photoelectron Spectroscopy of Chemical Compounds’ (Khimiya, Moscow, 1984).

    Google Scholar 

  24. V.P. Parkhutik, Corros. Sci. 26 (1986) 295.

    Google Scholar 

  25. V.P. Parkhutik, Yu.E. Makushok and V.I. Shershulskii, in Proceedings of the International Symposium on ‘Aluminium Surface Treatment Technology’ (The Electrochem. Society, Pennington, NJ, 1986).

    Google Scholar 

  26. C. Edelenu and U.R. Evans, Trans. Faraday Soc. 47 (1951) 1121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Rehim, S., Hassan, H. & Amin, M. Galvanostatic anodization of pure Al in some aqueous acid solutions Part I: Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films. Journal of Applied Electrochemistry 32, 1257–1264 (2002). https://doi.org/10.1023/A:1021662814303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021662814303

Navigation