Journal of Chemical Ecology

, Volume 28, Issue 12, pp 2569–2584 | Cite as

Cuticular Hydrocarbons of Tetramorium Ants from Central Europe: Analysis of GC-MS Data with Self-Organizing Maps (SOM) and Implications for Systematics

  • Florian M. Steiner
  • Birgit C. Schlick-Steiner
  • Alexej Nikiforov
  • Roland Kalb
  • Robert Mistrik
Article

Abstract

Cuticular hydrocarbons were extracted from workers of 63 different nests of five species of Tetramorium ants (Hymenoptera: Formicidae) from Austria, Hungary, and Spain. The GC-MS data were classified (data mining) by self-organizing maps (SOM). SOM neurons derived from primary neuron separation were subjected to hierarchical SOM (HSOM) and were grouped to neuron areas on the basis of vicinity in the hexagonal output grid. While primary neuron separation and HSOM resulted in classifications on a level more sensitive than species differences, neuron areas resulted in chemical phenotypes apparently of the order of species. These chemical phenotypes have implications for systematics: while the chemical phenotypes for T. ferox and T. moravicum correspond to morphological determination, in T. caespitum and T. impurum a total of six chemical phenotypes is found. Three hypotheses are discussed to explain this disparity between morphological and chemical classifications, including in particular the possibility of hybridization and the existence of cryptic species. Overall, the GC-MS profiles classified by SOM prove to be a practical alternative to morphological determination (T. ferox, T. moravicum) and indicate the need to revisit systematics (T. caespitum, T. impurum).

Self-organizing maps (SOM) Tetramorium ants Formicidae cuticular hydrocarbons chemical signature gas chromatography-mass spectrometry data mining systematics hybridization cryptic species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. BagnÈres, A.-G. and Morgan, E. D. 1991. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia 47:106–111.CrossRefGoogle Scholar
  2. BagnÈres, A.-G., RiviÈre, G., and ClÉment, J.-L. 1998. Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology 8:201–209.CrossRefGoogle Scholar
  3. Baur, A., Sanetra, M., Chalwatzis, N., Buschinger, A., and Zimmermann, F. K. 1996. Sequence comparisons of the internal transcribed spacer region of ribosomal genes support close relationships between parasitic ants and their respective host species (Hymenoptera: Formicidae). Insectes Soc. 43:53–67.CrossRefGoogle Scholar
  4. Billen, J. P. J., Evershed, R. P., Attygalle, A. B., Morgan, E. D., and Ollett, D.G. 1986. Contents of Dufour glands of workers of three species of Tetramorium. J. Chem. Ecol. 12:669–685.CrossRefGoogle Scholar
  5. Blomquist, G. J., Tillman, J. A., Mpuru, S., and Seybold, S. J. 1998. The cuticle and cuticular hydrocarbons of insects: structure, function, and biochemistry, pp. 34–54, in R. K. Vander Meer, M. Breed, M. Winston, and C. Espelie. (eds.). Pheromone Communication in Social Insects. Westview Press, Boulder, Colorado.Google Scholar
  6. Bolton, B. 1980. The ant tribe Tetramoriini (Hymenoptera: Formicidae). The genus Tetramorium Mayr in the Ethiopian zoogeographical region. Bull. Br. Mus. Nat. Hist. (Entomol.) 40:193–384.Google Scholar
  7. Bonavita-Cougourdan, A. and ClÉment, J.-L. 1994. Complexité du message chimique cuticulaire chez les Fourmis: le modèle Camponotus vagus (Scop.) (Hymenoptera, Formicidae). Mem. Zool. 48:23–38.Google Scholar
  8. Buschinger, A. 2001. Multiple Hybridisierung von Arten der Ameisen-Gattung Epimyrma (Hymenoptera: Formicidae), und Beobachtungen zur Ausbeutung derWirtsarten durch die Parasiten. Myrmecol. Nachr. 4:25–35.Google Scholar
  9. Dahbi, A., CerdÁ, X., Hefetz, A., and Lenoir, A. 1996. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22:2173–2186.CrossRefGoogle Scholar
  10. Dahbi, A., CerdÁ, X., and Lenoir, A. 1998. Ontogeny of colonial hydrocarbon label in callowworkers of the ant Cataglyphis iberica. C.R. Acad. Sci. Paris, Life Sci. 321:395–402.CrossRefGoogle Scholar
  11. D'Ettorre, P. and Errard, C. 1998. Chemical disguise during colony founding in the dulotic ant Polyergus rufescens Latr. (Hymenoptera, Formicidae). Insectes Soc. Life 2:71–77.Google Scholar
  12. Diffie, S., Vander Meer, R. K., and Bass, M. H. 1988. Discovery of hybrid fire ant populations in Georgia and Alabama. J. Entomol. Sci. 23:187–191.CrossRefGoogle Scholar
  13. Errard, C. and Vienne, C. 1994. Species recognition in heterospecific groups of ants: relative contribution of allospecific workers and queen. Ethology 98:277–290.CrossRefGoogle Scholar
  14. Haverty, M. I., Page, M., Nelson, L. J., and Blomquist, G. J. 1988. Cuticular hydrocarbons of dampwood termites, Zootermopsis: intra-and intercolony variation and potential as taxonomic characters. J. Chem. Ecol. 14:1035–1058.CrossRefGoogle Scholar
  15. Haverty, M. I., Nelson, L. J., and Page, M. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Similarities and origins of introductions. J. Chem. Ecol. 16:1635–1647.CrossRefGoogle Scholar
  16. Kohonen, T. 2001. Self-organizing Maps. Springer Verlag, Berlin.CrossRefGoogle Scholar
  17. Morel, L., Vander Meer, R. K., and Lavine, B. K. 1988. Ontogeny of nestmate recognition cues in the red carpenter ant (Camponotus floridanus). Behavioral and chemical evidence for the role of age and social experience. Behav. Ecol. Sociobiol. 22:175–183.CrossRefGoogle Scholar
  18. Morgan, E. D. and Ollett, D. G. 1987. Methyl 6-methylsalicylate, trail pheromone of the ant Tetramorium impurum. Naturwissenschaften 74:596–597.CrossRefGoogle Scholar
  19. Nelson, D. R. and Blomquist, G. J. 1995. Insect waxes, pp. 1–90, in R. J. Hamilton. (ed.). Waxes: Chemistry, Molecular Biology and Functions. The Oily Press Ltd., Dundee, Scotland.Google Scholar
  20. Nielsen, J., Boomsma, J. J., Oldham, N. J., Petersen, H. C., and Morgan, E. D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insectes Soc. 46:58–65.CrossRefGoogle Scholar
  21. Nikiforov, A., Schlick-Steiner, B. C., Steiner, F. M., Kalb, R., and Mistrik, R. 2001. Classi-fication of GC-MS data of epicuticular hydrocarbons from Tetramorium ants by self-organizing maps for morphological determinations. Poster at 49th ASMS Conference on Mass Spectrometry and Allied Topics, Chicago, Illinois, May 27- 31, 2001.Google Scholar
  22. Nowbahari, E., Lenoir, A., ClÉment, J. L., Lange, C., Bagneres, A. G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.CrossRefGoogle Scholar
  23. Page, M., Nelson, L. J., Blomquist, G. J., and Seybold, S. J. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23:1053–1099.CrossRefGoogle Scholar
  24. Pinto, J. D., Stouthamer, R., and Platner, G. R. 1997. A new cryptic species of Trichogramma (Hymenoptera: Trichogrammatidae) from the Mojave desert in California as determined by morphological, reproductive and molecular data. Proc. Entomol. Soc. Wash. D.C. 99:238–247.Google Scholar
  25. Ross, K. G., Vander Meer, R. K., Fletcher, D. J. C., and Vargo, E. L. 1987. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 41:280–293.CrossRefGoogle Scholar
  26. Schlick-Steiner, B. C. and Steiner, F. M. 1999. Faunistisch-ökologische Untersuchungen an den freilebenden ameisen (Hymenoptera: Formicidae) Wiens. Myrmecol. Nachr. 3:9–53.Google Scholar
  27. Schulz, A. 1996. Tetramorium rhenanum nov. spec. vom Mittleren Rheintal in Deutschland (Hymenoptera: Formicidae). Linzer Biol. Beitr. 28:391–412.Google Scholar
  28. Seifert, B. 1984. Nachweis einer im Freiland aufgetretenen Bastardierung von Leptothorax nigriceps Mayr und Leptothorax unifasciatus (Latr.) mittels einer multiplen Diskriminanzanalyse. Abh. Ber. Naturkundemus. Görlitz 58:1–8.Google Scholar
  29. Seifert, B. 1991. Lasius platythorax n. sp., a widespread sibling species of Lasius niger (Hymenoptera: Formicidae). Entomol. Gen. 16:69–81.CrossRefGoogle Scholar
  30. Seifert, B. 1992. A taxonomic revision of the Palaearctic members of the ant subgenus Lasius s. str. (Hymenoptera: Formicidae). Abh. Ber. Naturkundemus. Görlitz 66:1–67.Google Scholar
  31. Seifert, B. 1996. Ameisen: beobachten, bestimmen. Naturbuch Verlag, Augsburg.Google Scholar
  32. Trabalon, M., Plateaux, L., PÉru, L., BagnÈres, A.-G., and Hartmann, N. 2000. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J. Insect Physiol. 46:169–178.CrossRefGoogle Scholar
  33. Vander Meer, R. K. and Lofgren, C. S. 1985. Biochemical evidence for hybridization in fire ants. Fl. Entomol. 68:501–506.CrossRefGoogle Scholar
  34. Vander Meer, R. K., Saliwanchik, D., and Lavine, B. 1989. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta implications for nestmate recognition. J. Chem. Ecol. 15:2115–2125.CrossRefGoogle Scholar
  35. Yamaoka, R. 1990. Chemical approach to understanding interactions among organisms. Physiol. Ecol. Jpn. 27:31–52.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Florian M. Steiner
    • 1
  • Birgit C. Schlick-Steiner
    • 1
  • Alexej Nikiforov
    • 2
  • Roland Kalb
    • 2
  • Robert Mistrik
    • 3
  1. 1.Institute of ZoologyUniversity of Agricultural SciencesViennaAustria
  2. 2.Institute of Organic ChemistryUniversity of ViennaViennaAustria
  3. 3.HighChem Ltd.BratislavaSlovakia

Personalised recommendations