Skip to main content
Log in

Origin, causes and effects of increased nitrite concentrations in aquatic environments

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Literature frequently mentions increasednitrite concentrations along with itsinhibitory effect towards bacteria and aquaticlife. Nitrite accumulation has been studied fordecades, and although numerous causal factorshave already been commented on in literature,the mechanism of nitrite accumulation is notalways clear. From the broad range ofparameters and environmental factors reviewedin this paper, it is obvious that the causesand consequences of nitrite accumulation arenot yet completely understood. Among others,pH, dissolved oxygen, volatile fatty acids,phosphate and reactor operation have been foundto play a role in nitrite accumulation, whichresults from differential inhibition ordisruption of the linkage of the differentsteps in both nitrification anddenitrification. In the case of nitrification, thisdifferential inhibition could lead to thedisplacement or unlinking of the ammoniaoxidisers and nitrite oxidisers. In this paper,the idea is formulated that the nitrifierpopulation forms a role model for the totalmicrobial community. Increased nitriteconcentrations would in this aspect not onlysignal a disruption of nitrifiers, but possiblyalso of the total configuration of themicrobial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeling U & Seyfried CF (1993) Anaerobic-aerobic treatment of potato-starch Wastewater. Wat. Sci. Tech. 28(2): 165-176

    Google Scholar 

  • Alcaraz G, Chiappa Carrara X & Vanegas C (1997) Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquat. Toxicol. 39(3-4): 345-353

    Google Scholar 

  • Alcaraz G & Espina S (1997) Scope for growth of juvenile grass carp Ctenopharyngodon idella exposed to nitrite. Comp. Biochem. Physiol. 116C(1): 85-88

    Google Scholar 

  • Alleman JE & Irvine RL (1980) Nitrification in the sequencing batch biological reactor. J. WPCF. 52(11): 2747-2754

    Google Scholar 

  • Alleman JE (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Sci. Tech. 17: 409-419

    Google Scholar 

  • Alleman J & Preston K (1991) The biology of nitrifying bacteria. In Second annual workshop on commercial aquaculture using water recirculating systems, Purdue University, West Lafayette, 15-16 November 1991

    Google Scholar 

  • Almeida JS, JÚlio SM, Reis MAM & Carrondo MJT (1995a) Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 194-201

    Google Scholar 

  • Almeida JS, Reis MAM & Carrondo MJT (1995b) Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46(5): 476-484

    Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS & Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J. WPCF. 48(5): 835-852

    Google Scholar 

  • Arquiaga MC, Canter LW & Sabatini DA (1993) Microbiology of high-sodium-nitrite-wastewater treatment. Environ. Pollut. 81: 1-6

    Google Scholar 

  • Atlas RM & Bartha R (1993) Microbial Ecology-Fundamentals and Applications. The Benjamin/Cummings Publishing Company, Redwood City, California

    Google Scholar 

  • Atwood HL, Fontenot QC, Tomasso JR and Isely JJ (2001) Toxicity of nitrite to Nile tilapia: Effect of fish size and environmental chloride. N. Am. J. Aquacult. 63(1): 49-51

    Google Scholar 

  • Balmelle B, Nguyen KM, Capdeville B, Cornier JC & Deguin A (1992) Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Tech., 26(5-6): 1017-1025

    Google Scholar 

  • Barak Y, Tal Y & Van Rijn J (1998) Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. strain JR12. Appl. Environ. Microb. 64: 813-817

    Google Scholar 

  • Barak Y, Tal Y & Van Rijn J (2000) Relationship between nitrite reduction and active phosphate uptake in the phosphateaccumulating dentrifier Pseudomonas sp. strain JR 12. Appl. Environ. Microb. 66(12): 5236-5240

    Google Scholar 

  • Barnes D & Bliss PJ (1983) Biological Control of Nitrogen in Wastewater Treatment. E. & F.N. Spon, New York, 146 pp

    Google Scholar 

  • Baumann B, Snozzi M, Van der Meer JR & Zehder AJB (1997) Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Res. 31: 1947-1954

    Google Scholar 

  • Bilski P, Szychlinski J & Oleksy E (1988) Oxygen consumption in two aqueous systems: excited nitrite ions-oxygen and nitrite ions-singlet oxygen. J. Photochem. Photobiol. A: Chem 45: 269-288

    Google Scholar 

  • Blackall LL (2000) A summary of recent microbial discoveries in biological nutrient removal from wastewater. Aust. Biotech. 10(3): 29-31

    Google Scholar 

  • Bock E (1965) Vergleichende Untersuchung über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi. Arch. Microbiol. 51: 18-41

    Google Scholar 

  • Bock E (1978) Lithotrophic and chemoorganotrophic growth of nitrifying bacteria. In: Schlessinger D (Ed), Microbiology (pp. 310-314). American Society of Microbiology, Washington, DC

    Google Scholar 

  • Bock E, Koops HP & Harms H (1986) Cell biology of nitrifying bacteria. In: Prosser JI (Ed), Nitrification (pp 17-38). IRL Press, Washington, DC

    Google Scholar 

  • Bock E, Koops HP & Harms H (1989) Nitrifying bacteria. In: HG Schlegel & B Bowien (Eds), Autotrophic Bacteria (pp 81-96). Science Tech Publishers, Madison, Wisconsin

    Google Scholar 

  • Bock E, Koops HP, Harms H & Ahlers B (1991) The biochemistry of nitrifying organisms. In: JM Shively & LL Barton (Eds), Variations in Autotrophic Life. Academic Press, New York

    Google Scholar 

  • Bonin P (1996) Anaerobic nitrate reduction to ammonium in two strains isolated from costal marine sediment: A dissimilatory pathway. FEMS Microbiol. Ecol. 19(1): 27-38

    Google Scholar 

  • Bovendeur J (1989) Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems. Ph.D. Thesis, Agricultural University Wageningen, The Netherlands

    Google Scholar 

  • Bradberry SM, Gazzard B and Vale JA (1994) Methemoglobinemia caused by the accidental contamination of drinking water with sodium nitrite. J. Toxicol-Clin. Toxic. 32: 173-178

    Google Scholar 

  • Bredt DS (1999) Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radical Res. 31(6): 577-596

    Google Scholar 

  • Brown & Caldwell (1975) Process design manual for nitrogen control. U.S. Environ. Prot. Agency Technology Transfer, EPA/625/1-75-007, PB-259 149/3BE

  • Brunning-Fann CS & Kaneene JB (1993a) The effects of nitrate, nitrite, and N-nitroso compounds on animal health. Vet. Hum. Toxicol. 35(3): 237-253

    Google Scholar 

  • Brunning-Fann CS & Kaneene JB (1993b) The effects of nitrate, nitrite, and N-nitroso compounds on human health. Vet. Hum. Toxicol. 35(6): 521-538

    Google Scholar 

  • Burrell PC, Keller J & Blackall L (1998) Microbiology of a nitriteoxidizing Bioreactor. Appl. Environ. Microb. 64: 1878-1883

    Google Scholar 

  • Burrell P, Keller J & Blackall L (1999) Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge. Wat. Sci. Tech. 39(6): 45-52.

    Google Scholar 

  • Casey TG, Wentzel MC & Ekama GA (1999a) Filamentous organism bulking in nutrient removal activated sludge systems. Paper 10: Metabolic behaviour of heterotrophic facultative aerobic organisms under aerated/unaerated conditions. Water SA. 25(4): 425-442

    Google Scholar 

  • Casey TG, Wentzel MC & Ekama GA (1999b) Filamentous organism bulking in nutrient removal activated sludge systems. Paper 11: A biochemical/microbiological model for proliferation of anoxic-aerobic (AA) filamentous organisms. Water SA. 25(4): 443-451

    Google Scholar 

  • Casey TG, Wentzel MC, Ekama GA, Loewenthal RE & Marais GvR (1994) A hypothesis for the causes and control of anoxicaerobic (AA) filament bulking in nutrient removal activated sludge systems. Wat. Sci. Tech. 29(7): 203-212

    Google Scholar 

  • Caskey WH & Tiedje JM (1980) The reduction of nitrate to ammonium by a Clostridium sp. isolated from soil. J. Gen. Microbiol. 119: 217-223

    Google Scholar 

  • Castignetti D & Gunner HB (1982) Differential tolerance of hydroxylamine by an Alcaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis. Can. J. Microbiol. 28: 148-150

    Google Scholar 

  • Ceçen F & Gönenç IE (1995) Criteria for nitrification and denitrification of high-strength wastes in 2 upflow submerged filters. Water Environ. Res. 67(2): 132-142

    Google Scholar 

  • Chen JC & Chin TS (1988) Acute toxicity of nitrite to tiger prawn, Penaeus monodon, larvae. Aquaculture 69: 253-262

    Google Scholar 

  • Cheng SY & Chen JC (1998) Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus. Aquat. Toxicol. 44: 129-139

    Google Scholar 

  • Cheng SY & Chen JC (2000) Accumulation of nitrite in the tissues of Penaeus monodon exposed to elevated ambient nitrite after different time periods. Arch. Environ. Con. Tox. 39(2): 183-192

    Google Scholar 

  • Cole J (1996) Nitrate reduction to ammonia by enteric bacteria: Redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136: 1-11

    Google Scholar 

  • Cui X, Joannou CL, Hughes MN & Cammack R (1992) The bactericidal effects of transition metal complexes containing the NO+ group of the food-spoilage bacterium Clostridium sporogenes. FEMS Microbiol. Lett. 98: 67-70

    Google Scholar 

  • Dahl C, Sund C, Kristensen GH & Vredenbregt L (1997) Combined biological nitrification and denitrification of highsalinity wastewater Wat. Sci. Tech. 36(2-3): 345-352

    Google Scholar 

  • Daims H, Nielsen PH, Nielsen JL, Juretschko S & Wagner M (2000) Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Wat. Sci. Tech. 41(4-5): 85-90

    Google Scholar 

  • De Boer W, Klein Gunnewiek PJA, Veenhuis M, Bock E & Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57(12): 3600-3604

    Google Scholar 

  • Dinçer AR & Kargi F (1999) Salt inhibition of nitrification and denitrification in saline wastewater. Environ. Technol. 20: 1147-1153

    Google Scholar 

  • Doblander C & Lackner R (1997) Oxidation of nitrite to nitrate in isolated erythrocytes: A possible mechanism for adaptation to environmental nitrite. Can. J. Fish. Aquat. Sci. 54(1): 157-161

    Google Scholar 

  • Drysdale GD, Kasan HC & Bux F (2001) Assessment of denitri-fication by the ordinary heterotrophic organisms in an NDBEPR activated sludge system. Wat. Sci. Tech. 43(1): 147-154

    Google Scholar 

  • Eddy FB & Williams EM (1994) Freshwater fish and nitrite. In Howells G (Ed), Water Quality for Freshwater Fish (pp 117-143). Gordon and Beach Science Publ., Switzerland

    Google Scholar 

  • Eilersen AM, Henze M & Kloft L (1995) Effect of volatile fattyacids and trimethylamine on denitrification in activated sludge. Water Res. 29(5): 1259-1266

    Google Scholar 

  • Eilersen AM, Henze M & Kloft L (1994) Effect of volatile fatty-acids and trimethylamine on nitrification in activated sludge Water Res. 28(6): 1329-1336

    Google Scholar 

  • European Council Directive (1998) dd. 3/11/1998 concerning the quality of water destined for human consumption. Reference number JOLI 1998/330-4EN

  • European Economic Community (1978) A directive of the quality of freshwater needing protection or improvement in order to support fish life. Off. J. Eur. Comm. L222: 35-54

    Google Scholar 

  • Fdz-Polanco F, Villaverde S & Garcia PA (1994) Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Wat. Sci. Tech. 30(11): 121-130

    Google Scholar 

  • Fdz-Polanco F, Villaverde S & Garcia PA (1996) Effects causing nitrite build-up in biofilters. Wat. Sci. Tech. 34(3): 371-378

    Google Scholar 

  • Ferguson SJ (1994) Denitrification and its control. Ant. Leeuw. Int. J. G. 66: 89-110

    Google Scholar 

  • Focht D & Verstraete W (1977) Biochemical ecology of nitrification and denitrification. In Alexander M (Ed) Advances in Microbial Ecology, vol. 1 (pp 135-214). Plenum Press, New York

    Google Scholar 

  • Fontenot QC & Isely JJ (1998) Toxicity of ammonia and nitrite to Shortnose sturgeon. Meeting of the Southern Division of the American Fisheries Society Midyear Meeting, Lexington, Kentucky

  • Frances J, Allan GL & Nowak BF (1998) The effects of nitrite on the short-term growth of silver perch (Bidyanus bidyanus). Aquaculture 163(1-2): 63-72

    Google Scholar 

  • Furumai H, Tagui H & Fujita K (1996) Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter. Wat. Sci. Tech. 34(1-2): 355-362

    Google Scholar 

  • item Gelda RK, Effler SW & Brooks CM (1999) Nitrite and the two stages of nitrification in nitrogen polluted Onondaga lake, New York. J. Environ. Qual. 28: 1505-1517

    Google Scholar 

  • Gerards S, Duyts H & Laanbroek HJ (1998) Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries. FEMS Microbiol. Ecol. 26: 269-280

    Google Scholar 

  • Gerber JM (1997) Nutrition and migraine: Review and recommended strategies JNMS-J. Neuromusc. Sys. 5(3): 87-94

    Google Scholar 

  • Ginestet P, Audic J-M, Urbain V & Block J-C (1998) Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Appl. Environ. Microb. 64(6): 2266-2268

    Google Scholar 

  • Glass C & Silverstein J (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32(3): 831-839

    Google Scholar 

  • Glass C, Silverstein J & Oh J (1997) Inhibition of denitrification in activated sludge by nitrite Water Environ. Res. 69(6): 1086-1093

    Google Scholar 

  • Gomez MA, Gonzalez-Lopez J & Hontoria-Garcia E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J. Haz. Mat. B80: 69-80

    Google Scholar 

  • Gonzales JF, Dal Valle PL, Thohan S & Kane AS (2000) Effects of waterborne nitrite on phase I-II biotransformation in channel catfish (Ictalurus punctatus). Mar. Environ. Res. 50(1-5): 29-32

    Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW & Watson SW (1980) Production of NO -2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microb. 40: 526-532

    Google Scholar 

  • Groeneweg J, Sellner B & Tappe W (1994) Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: Effects of pH and temperature. Water Res. 28: 2561-2566

    Google Scholar 

  • Grosell M & Jensen FB (2000) Uptake and effects of nitrite in the marine teleost fish Platichthys flesus. Aquat. Toxicol. 50(1-2): 97-107

    Google Scholar 

  • Grundmann GL & Debouzie D (2000) Geostatistical analysis of the distribution of NH +4 and NO -2 -oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol. Ecol. 34: 57-62

    Google Scholar 

  • Guerrero MA & Jones RD (1996) Photoinhibition of marine nitrifying bacteria. 1. Wavelength-dependent response. Mar. Ecol.-Prog. Ser. 141(1-3): 183-192

    Google Scholar 

  • Hanaki K, Chalermraj W & Shinichiro O (1990a) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res. 24(3): 289-296

    Google Scholar 

  • Hanaki K, Chalermraj W & Shinichiro O (1990b) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24(3): 297-302

    Google Scholar 

  • Hao OJ & Chen JM (1994) Factors affecting nitrite buildup insubmerged filter system. J. Environ. Eng.-ASCE. 120(5): 1298-1307

    Google Scholar 

  • Harada H, Ando H & Momonoi K (1987) Process analysis of fluidized-bed biofilm reactor for denitrification. Wat. Sci. Tech. 19(1-2): 151-162

    Google Scholar 

  • Harris JO, Maguire GB & Handlinger JH (1998) Effects of chronic exposure of greenlip abalone, Haliotis laevigata Donovan, to high ammonia, nitrite, and low dissolved oxygen concentrations on gill and kidney structure. J. Shellfish Res. 17(3): 683-687

    Google Scholar 

  • He YJ & Bishop PL (1994) Effect of acid orange 7 on nitrification process. J. Environ. Eng.-New York, 120(1): 108-121

    Google Scholar 

  • Hellinga C, Van Loosdrecht MCM & Heijnen JJ (1997) The Sharon process for nitrogen removal in ammonium rich wastewater. Med. Fac. Landbouww. Univ. Gent. 62: 1743-1750

    Google Scholar 

  • Henze M, Grady CPL Jr, Gujer W, Marais GVR & Matsuo T (1987) Activated sludge model No. 1. IAWPRC Scientific and Technical Reports No. 1, London, UK

  • Hiorns WD, Hastings RC, Head IM, McCarthy AJ, Saunders JR, Pickup RW & Hall GH (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment. Microbiology 141: 2793-2800

    Google Scholar 

  • Hockenbury MR & Grady GPL (1977) Inhibition of nitrification-effects of selected organic compounds. J.WPCF. 49: 768-777

    Google Scholar 

  • Holub W, Przytocka-Jusiak M, Blaszczyk M & Mycielski R (2000) Nitrite as agent selecting anaerobic phenol-degrading microflora in petroleum refining sediments. Water Res. 34(4): 1354-1358

    Google Scholar 

  • Horan NJ & Azimi AA (1992) The effects of transient nitrogen loadings on nitrifying activated sludges in completely mixed and plug-flow reactors. Water Res 26(3): 279-284

    Google Scholar 

  • Hovanec TA, Taylor LT, Blakis A & Delong EF (1998) Nitrospiralike bacteria associated with nitrite oxidation in freshwater aquaria. Appl. Environ. Microb. 64(1): 258-264

    Google Scholar 

  • Hu SS (1990) Acute substrate-intermediate-product related inhibition of nitrifiers. M.S. Thesis, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA

    Google Scholar 

  • Hunik JH, Tramper J & Wijffels RH (1994) A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Eng. 11: 73-82

    Google Scholar 

  • Jetten MSM, Logemann S, Muyzer G, Robertson LA, de Vries S, van Loosdrecht MCM & Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Ant. Leeuw. Int. J. G. 71: 75-93

    Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM & Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol. Rev. 22: 421-437

    Google Scholar 

  • Joo S-H, Kim D-J, Yoo I-K, Park K & Cha G-C (2000) Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnol. Lett. 22: 937-940

    Google Scholar 

  • Jooste SHJ & Vanleeuwen J (1993) Induction of nitrite build-up in water by some common disinfectants. Water SA. 19(2): 107-112

    Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Röser A, Koops H-P & Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrososcoccus mobilis and Nitrospira-like bacteria as dominant Populations. Appl. Environ. Microb. 64(8): 3042-3051

    Google Scholar 

  • Kamath S, Sabatini DA & Canter LW (1991) Biological nitrification/denitrification of high sodium nitrite (navy shipyard) wastewater. Environ. Pollut. 69(1): 25-38

    Google Scholar 

  • Kamstra A, Span JA & van Weerd JH (1996) The acute toxicity and sub-lethal effects of nitrite on growth and feed utilization of European eel Anguilla anguilla (L.). Aqucault. Res. 27: 903-911

    Google Scholar 

  • Kaplan D, Wilhelm R & Abeliovich A (2000) Interdependent environmental factors controlling nitrification in waters. Wat. Sci. Tech. 42(1-2): 167-172

    Google Scholar 

  • Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT and Meadow PM (Eds) Companion to Microbiology (pp 363-386). Longman, London

    Google Scholar 

  • Kelso BHL, Smith RV & Laughlin RJ (1999) Effects of carbon substrates on nitrite accumulation in freshwater sediments. Appl. Environ. Microb. 65(1): 61-66

    Google Scholar 

  • Kelso BHL, Smith RV, Laughlin RJ & Lennox SD (1997) Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Appl. Environ. Microb. 63: 4679-4685

    Google Scholar 

  • Kieber RJ, Li A & Seaton PJ (1999) Production of nitrite from the photodegradation of dissolved organic matter in natural waters. Environ. Sci. Technol. 33(7): 993-998

    Google Scholar 

  • Kielemoes J, De Boever P & Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ. Sci. Technol. 34(4): 663-671

    Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol. Rev. 38: 87-100

    Google Scholar 

  • Klüber HD & Conrad R (1998a) Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25: 301-318

    Google Scholar 

  • Klüber HD & Conrad R (1998b) Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol. Ecol. 25: 331-339

    Google Scholar 

  • Knowles G, Downing AL & Barett MJ (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. J. Gen. Microbiol. 38: 263-278

    Google Scholar 

  • Koch G & Siegrist H (1997) Denitrification with methanol in tertiary filtration at wastewater treatment plant Zürich-Werdhölzli. Wat. Sci. Tech. 36(1): 165-172

    Google Scholar 

  • Kone S & Behrens U (1981) Zur Kinetik der Denitrifikation, teil 1: Mischpopulation und Acetat als Kohlenstoffquele (in German). Acta Hydrochim. Hydrobiol. 9: 523-533

    Google Scholar 

  • Kornaros M & Lyberatos G (1997) Kinetics of aerobic growth of a denitrifying bacterium, Pseudomonas denitrificans in the presence of nitrates and/or nitrites. Water Res. 31: 479-488

    Google Scholar 

  • Kornaros M, Zafiri C & Lyberatos G (1996) Kinetics of denitri-fication by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Water Environ. Res. 68: 934-945

    Google Scholar 

  • Krul JM & Veeningen R (1977) The synthesis of the dissimilatory nitrate reductase under aerobic conditions in a number of denitrifying bacteria, isolated from activated sludge and drinking water. Water Res. 11: 39-43

    Google Scholar 

  • Kuai L & Verstraete W (1998) Ammonium removal by the oxygen limited autotrophic nitrificaton and denitrification (OLAND) system. Appl. Environ. Microb. 64(11): 4500-4506

    Google Scholar 

  • Kuba T, van Loosdrecht MCM & Heijnen JJ (1996) Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Wat. Sci. Tech. 34(1-2): 33-40

    Google Scholar 

  • Kuhlen R, Busch T, Max M, Reyle-Hahn M, Falke KJ & Rossaint R (1999) Fluctuations of inspired concentrations of nitric oxide and nitrogen dioxide during mechanical ventilation. Crit. Care. 3(1): 1-6

    Google Scholar 

  • Laanbroek HJ, Bodelier PLE & Gerards S (1994) Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed cultures at different oxygen concentrations. Arch. Microbiol. 161: 156-162

    Google Scholar 

  • Laanbroek HJ & Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradsky grown in mixed continuous cultures. Arch. Microbiol. 159: 453-459

    Google Scholar 

  • Laanbroek HJ & Woldendorp JW (1995) Activity of chemolithotrophic nitrifying bacteria under stress in natural soils. In: Jones JG (Ed) Advances in Microbial Ecology, vol. 14 (pp 275-304). Plenum Press, New York

    Google Scholar 

  • Lee YW, Ong SK & Sato C (1997) Effects of heavy metals on nitrifying bacteria. Wat. Sci. Tech. 36(12): 69-74

    Google Scholar 

  • Leu HG, Lee CD, Ouyang CF & Tseng HT (1998) Effects of organic matter on the conversion rates of nitrogenous compounds in a channel reactor under various flow conditions. Water Res. 32(3): 891-899

    Google Scholar 

  • Lewis WM Jr. & Morris DP (1986) Toxicity of nitrite to fish: a review. T. Am. Fish. Soc. 115: 183-199

    Google Scholar 

  • Mallick N, Mohn FH & Soeder CJ (2000) Evidence supporting nitrite-dependent NO release by the green microalga Scenedesmus obliquus. J. Plant Physiol. 157(1): 40-46

    Google Scholar 

  • Marco A & Blaustein AR (1999) The effects of nitrite on the behavior and metamorphosis in cascades frogs (Rana cascadae). Environ. Toxicol. Chem. 18(5): 946-949

    Google Scholar 

  • Marco A, Quilchano C & Blaustein AR (1999) Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific northwest, USA. Environ. Toxicol. Chem. 18(12): 2836-2839

    Google Scholar 

  • Martienssen M & Schops R (1997) Biological treatment of leachate from solid waste landfill sites-alterations in the bacterial community during the denitrification process. Water Res. 31: 1164-1170

    Google Scholar 

  • Martienssen M & Schops R (1999) Population dynamics of denitrifying bacteria in a model biocommunity. Water Res. 33(3): 639-646

    Google Scholar 

  • Martienssen M, Simon J & Schulz R (1995) Capacities and limits of three different technologies for the biological treatment of leachate from solid waste landfill sites. Acta Biotechnol. 15: 269-276

    Google Scholar 

  • Mauret M, Paul E, Puech-Costes E, Maurette MT & Baptiste P (1996) Application of experimental research methodology to the study of nitrification in mixed culture. Wat. Sci. Tech. 34(1): 245-252

    Google Scholar 

  • Meade ME & Watts SA (1995) Toxicity of ammonia, nitrite and nitrate to juvenile Australian crayfish, Cherax quadricarnatus'. J. Shellfish Res. 14(2): 341-346

    Google Scholar 

  • Meinhold J, Arnold E & Isaacs S (1999) Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res. 33(8): 1871-1883

    Google Scholar 

  • Merkel W, Bohler E & Frimmel FH (1993) Heterotrophic denitrification-The influence of oxygen and pH value. Acta Hydroch. Hydrob. 21(5): 249-257

    Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE & Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microb. 62(6): 2156-2162

    Google Scholar 

  • Morgenroth E, Obermayer A, Arnold E, Bruhl A, Wagner M & Wilderer PA (2000) Effect of long-term idle periods on the performance of sequencing batch reactors. Wat. Sci. Tech. 41(1): 105-113

    Google Scholar 

  • Mulder JW & van Kempen R (1997) N-removal by Sharon. Water Qual. Int. 15: 30-31

    Google Scholar 

  • Muller EB, Stouthamer AH & van Verseveld HW (1995) A novel method to determine maximal nitrification rates by sewage sludge at a non-inhibitory nitrite concentration applied to determine maximal rates as a function of the nitrogen load. Water Res. 29(4): 1191-1197

    Google Scholar 

  • Münch EV, Lant P & Keller J (1996) Simultaneous nitrification and denitrification in becnh-scale sequencing batch reactors. Water Res. 30: 277-284

    Google Scholar 

  • Musvoto EV, Lakay MT, Casey TG, Wentzel MC & Ekama GA (1999) Filamentous organism bulking in nutrient removal activated sludge systems-Paper 8: The effect of nitrate and nitrite. Water SA. 25(4): 397-407

    Google Scholar 

  • Murray I, Parsons JW & Robinson K (1975) Interrelationships between nitrogen-balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste. Water Res. 9(1): 25-30

    Google Scholar 

  • Neufeld R, Greenfield J & Rieder B (1986) Temperature, cyanide and phenolic nitrification inhibition. Water Res. 20(5): 633-642

    Google Scholar 

  • Nijhof M & Klapwijk A (1995) Diffusional transport mechanisms and biofilm nitrification characteristics influencing nitrite levels in nitrifying trickling filter effluents. Water Res. 29(10): 2287-2292

    Google Scholar 

  • Nowak O, Svardal K & Kroiss H (1996) The impact of phosphorus deficiency on nitrification-Case study of a biological pretreatment plant for rendering plant effluent. Wat. Sci. Tech. 34(1-2): 229-236

    Google Scholar 

  • Nowak O, Svardal K & Schweighofer P (1994) The dynamic behaviour of nitrifying activated sludge systems influenced by inhibiting wastewater compounds. Proceedings of Modelling and Control of Activated Sludge Processes, Copenhagen, Denmark, 22-24 August 1994

  • Oh J & Silverstein J (1999a) Acetate limitation and nitrite accumulation during denitrification. J. Environ. Eng.-ASCE. 125(3): 234-242

    Google Scholar 

  • Oh J & Silverstein J (1999b) Oxygen inhibition of activated sludge denitrification. Water Res. 33(8): 1925-1937

    Google Scholar 

  • Okabe S, Oozawa Y, Hirata K & Watanabe Y (1996) Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30(7): 1563-1577

    Google Scholar 

  • Okabe S, Satoh H & Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in city hybridization and the use of microelectrodes Appl. Environ. Microb. 65(7): 3182-3191

    Google Scholar 

  • Olson RJ (1981) Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res. 39: 227-238

    Google Scholar 

  • Pak D & Chang W (2000) Simultaneous removal of nitrogen and phosphorus in a two-biofilter system. Wat. Sci. Tech. 41(12): 101-106

    Google Scholar 

  • Parra G & Yufera M (1999) Tolerance response to ammonia and nitrite exposure in larvae of two marine fish species (gilthead seabream Sparus aurata L. and Senegal sole Solea senegalensis Kaup). Aquac. Res. 30(11-12): 857-863

    Google Scholar 

  • Payne WJ (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37: 409-452

    Google Scholar 

  • Peng DC, Bernet N, Delgenes JP & Moletta R (2000) Effects of oxygen supply methods on the performance of a sequencing batch reactor for high ammonium nitrification. Water Environ. Res. 72(2): 195-200

    Google Scholar 

  • Percheron G, Bernet N & Moletta R (1999) Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiol. Ecol. 29(4): 341-350

    Google Scholar 

  • Philips S & Verstraete W (2000) Inhibition of activated sludge by nitrite in the presence of proteins or amino acids. Environ. Technol. 21: 1119-11125

    Google Scholar 

  • Poughon L, Dussap CG & Gros JB (1999) Dynamic model of a nitrifying fixed bed column: Simulation of the biomass distribution of Nitrosomonas and Nitrobacter and of transient behaviour of the column. Bioprocess Eng. 20(3): 209-221

    Google Scholar 

  • Prakasam TBS & Loehr RC (1972) Microbial nitrification and denitrification in concentrated wastes. Water Res. 6: 859-869

    Google Scholar 

  • Pullium JK, Dillehay DL & Webb S (1999) High mortality in zebrafish (Danio rerio). Contemp. Top. lab. Anim. 38(3): 80-83

    Google Scholar 

  • Purkhold U, Pommering-Röser A, Juretschko S, Schmid MC, Koops H-P & Wagner M (2000) Phylogney of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microb. 66(12): 5368-5382

    Google Scholar 

  • Quevedo M, Guynot E & Muxi L (1996) Denitrifying potential of methanogenic Sludge. Biotechnol. Lett. 18(12): 1363-1368

    Google Scholar 

  • Randall CW & Buth D (1984a) Nitrite build-up in an activated sludge resulting form combined temperature and toxicity effects. J. WPCF. 56: 1045-1049

    Google Scholar 

  • Randall CW & Buth D (1984b) Nitrite build-up in activated sludge resulting from temperature effects. J. WPCF. 56: 1039-1044

    Google Scholar 

  • Rittman BE, Laspidou CS, Flax J, Stahl DA, Urbain V, Harduin H, van der Waarde J, Geurkink B, Henssen MJC, Brouwer H, Klapwijk A & Wetterauw M(1999) Molecular and modeling analyses of the structure and function of nitrifying sludge. Wat. Sci. Tech. 39(1): 51-59

    Google Scholar 

  • Rols JL, Mauret M, Rahmani H, Ngyen KM, Capdeville B, Cornier JC & Deguin A (1994) Population dynamics and nitrite build-up in activated sludge and biofilm processes for nitrogen removal. Wat. Sci. Tech. 29(7): 43-51

    Google Scholar 

  • Rottenberg H (1990) Decoupling of oxidative phosphorylation and photo-phosphorylation. Biochim. Biophys. Acta 1018: 1-17

    Google Scholar 

  • Sauter LJ & Alleman JE (1980) A streamlined approach to biological nitrogen removal. J. Environ. Eng.-ASCE.: 296-306

  • Schramm A, de Beer D, Gieseke A & Amann R (2000) Microenvironments and distribution of nitrifying bacteria in a membranebound biofilm. Environ. Microbiol. 2(6): 680-686

    Google Scholar 

  • Schramm A, de Beer D, Wagner M & Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microb. 64(9): 3480-3485

    Google Scholar 

  • Schuch R, Gensicke R, Merkel K & Winter J (2000) Nitrogen and DOC removal from wastewater streams of the metal-working industry. Water Res. 34(1): 295-303

    Google Scholar 

  • Sharma B & Ahlert RC (1977) Nitrification and nitrogen removal. Water. Res. 11: 897-925

    Google Scholar 

  • Sijbesma WFH, Almeida JS, Reis MAM & Santos H (1996) Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: an in vivo 31P-NMR study. Biotechnol. Bioeng. 52: 176-182

    Google Scholar 

  • Smith MS (1982) Dissimilatory reduction of NO2 - to NH4 + and N2O by a soil Citrobacter sp. Appl. Environ. Microb. 43(4): 854-860

    Google Scholar 

  • Smith RV, Burns LC, Doyle RM, Lennox SD, Kelso BHL, Foy RH & Stevens RJ (1997a) Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation. J. Environ. Qual. 26: 1049-1055

    Google Scholar 

  • Smith RV, Doyle RM, Burns LC & Stevens RJ (1997b) A model for nitrite accumulation in Soils. Soil Biol. Biochem. 29(8): 1241-1247

    Google Scholar 

  • Smith RV, Foy RH, Lennox SD, Jordan C, Burns LC, Cooper JE & Stevens RJ (1995) Occurrence of nitrite in the Lough Neagh River System. J. Environ. Qual. 24: 952-959

    Google Scholar 

  • Sørensen J (1978) Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Microb. 35(2): 301-305

    Google Scholar 

  • Spector M (1998) Cocurrent biological nitrification and denitri-fication in wastewater treatment. Water Environ. Res. 70(7): 1242-1247

    Google Scholar 

  • Stein LY & Arp DJ (1998) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl. Environ. Microb. 64(10): 4098-4102

    Google Scholar 

  • Stein LY, Arp DJ & Hyman MR (1997) Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Appl. Environ. Microb. 63(11): 4588-4592

    Google Scholar 

  • Strous M (2000) Microbiology of anaerobic ammonium oxidation. Ph.D. Thesis, Technical University Delft, The Netherlands

    Google Scholar 

  • Stüven R, Vollmer M & Bock E (1992) The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch. Microbiol. 158: 439-443

    Google Scholar 

  • Surmacz-Gorska J, Cichon A & Miksch K (1997) Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Wat. Sci. Tech. 36(10): 73-78

    Google Scholar 

  • Surmacz-Gorska J, Gernaey K, Demuynck C, Vanrolleghem P & Verstraete W (1996) Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water Res. 30: 1228-1236

    Google Scholar 

  • Suthursan S & Ganczarczyk JJ (1986) Inhibition of nitrite oxidation during nitrification, some observations. Water Pollut. Res. J. Can. 21(2): 257-266

    Google Scholar 

  • Suzuki I, Kwok SC & Dular U (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120: 556-558

    Google Scholar 

  • Takai T, Hirata A, Yamauchi K & Inamori Y (1997) Effects of temperature and volatile fatty acids on nitrification denitrification activity in small scale anaerobic aerobic recirculation biofilm process. Wat. Sci. Tech. 35(6): 101-108

    Google Scholar 

  • Tang NH, Blum DJW, Nirmalakhandan N & Speece RE (1992) QSAR parameters for toxicity of organic chemicals to Nitrobacter. J. Environ. Eng.-ASCE. 118(1): 17-37

    Google Scholar 

  • Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J & van Verseveld HW (1999) Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradsky cultivated in a retentostat with complete biomass retention. Appl. Environ. Microb. 65(6): 2471-2477

    Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD & Robinson JA (1982) Denitrification: ecological niches, competition and survival. Ant. Leeuw. Int. J. G. 48: 569-583

    Google Scholar 

  • Tomlinson TG, Boon AG & Trotman CNA (1966) Inhibition of nitrification in the activated sludge process of sewage disposal. J. Appl. Bacteriol. 29: 266-291

    Google Scholar 

  • Tonkovic Z (1998) Nitrite accumulation at the Mornington sewage treatment plant-causes and significance (pp 165-172). 19th Biennial International Conference, Water Quality International 1998. IAWQ, Vancouver, Canada, 21-26 June 1998

    Google Scholar 

  • Turk O & Mavinic DS (1986) Preliminary assessment of a shortcut in nitrogen removal from wastewater. Can. J. Civil Eng. 13: 600-605

    Google Scholar 

  • Turk O & Mavinic DS (1989) Stability of nitrite build-up in an activated sludge system. J. WPCF. 61(8): 1440-1448

    Google Scholar 

  • Van Leeuwen FXR (2000) Safe drinking water: The toxicologist's approach. Food Chem. Toxicol. 38: S51-S58

    Google Scholar 

  • Van Rijn J, Tal Y & Barak Y (1996) Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor. Environ. Microbiol. 62: 2615-2620

    Google Scholar 

  • Vanzella A, Guerrero MA & Jones RD (1989) Effects of CO and light on ammonium and nitrite oxidation by chemolitotrophic bacteria. Mar. Ecol.-Prog. Ser. 57: 69-76

    Google Scholar 

  • Venterea RT & Rolston DE (2000a) Mechanistic modeling of nitrite accumulation and nitrogen oxide gas emissions during nitrification. J. Environ. Qual. 29: 1741-1751

    Google Scholar 

  • Venterea RT & Rolston DE (2000b) Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil'. Glob. Change Biol. 6(3): 303-316

    Google Scholar 

  • Verstraete W, Vanstaen H & Voets JP (1977) Adaptation to nitrification of activated sludge systems treating highly nitrogenous waters. J. WPCF. 49: 1604-1608

    Google Scholar 

  • Verstraete W & Philips S (1998) Nitrification/denitrification processes and technologies in new contexts. Environ. Pollut. 102: 717-726

    Google Scholar 

  • Villaverde S, Fdz-Polanco F & Garcia PA (1997) Influence of pH on nitrifying bacteria activity in submerged biofilters. Water Res. 31(5): 1180-1186

    Google Scholar 

  • Villaverde S, Fdz-Polanco F & Garcia PA (2000) Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence. Water Res. 34(2): 602-610

    Google Scholar 

  • Von Der Wiesche M & Wetzel A (1998) Temporal and spatial dynamics of nitrite accumulation in the river Lahn. Water Res. 32(5): 1653-1661

    Google Scholar 

  • von Schulthess R, Kühni M & Gujer W (1995) Release of nitric and nitrous oxides from denitrifying activated sludge. Water Res. 29(1): 215-226

    Google Scholar 

  • Wang W (1984) Time response of Nitrobacter to toxicity. Environ. Int. 10: 21-26

    Google Scholar 

  • Ward BB (2000) Nitrification and the marine nitrogen cycle. In: Kirchman DL (Ed), Microbiol Ecology of the Oceans (pp 427-453). Wiley-Liss, New York

    Google Scholar 

  • Weng YM, Hotchkiss JH & Babish JG (1992) N-nitrosamine and mutagenicity formation in Chinese salted fish after digestion. Food Addit. Contam. 9: 29-37

    Google Scholar 

  • WHO (1996) Guidelines for drinking water quality (pp 940-949). Health criteria and other supporting information, World Health Organisation, Geneva

    Google Scholar 

  • Wild D, Von Schulthess R & Gujer W (1995) Structured modelling of denitrification Intermediates. Wat. Sci. Tech. 31: 45-54

    Google Scholar 

  • Wilderer PA, Jones WJ & Dau U (1987) Competition in denitrification systems affecting reduction rate and accumulation of nitrite. Water Res. 21: 239-245

    Google Scholar 

  • Wise DJ & Tomasso JR (1989) Acute toxicity of nitrite to red drum, Sciaenops ocellatus: effect of salinity. J. World Aquacul. Soc. 20(4): 193-198

    Google Scholar 

  • Wong-Chong GM & Loehr RC (1975) Kinetics of microbial nitrification. Water Res. 9(12): 1099-1106

    Google Scholar 

  • Wong-Chong GM & Loehr RC (1978) Kinetics of microbial nitrification-Nitrite-nitrogen oxidation. Water Res. 12(8): 605-609

    Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (Ed) Nitrification (pp 39-62). IRL Press, Oxford, UK

    Google Scholar 

  • Wortman B & Wheaton F (1991) Temperature effects on biodrum nitrification. Aquacult. Eng. 10: 183-205

    Google Scholar 

  • Yang L & Alleman JE (1992) Investigation of batchwise nitrite build-up by an enriched nitrification culture. Wat. Sci. Tech. 26(5-6): 997-1005

    Google Scholar 

  • Zhang TC, Fu YC & Bishop PL (1995) Competition for substrate and space in Biofilms. Water Environ. Res. 67: 992-1003

    Google Scholar 

  • Zhang SY, Wang JS, Jiang ZC & Chen MX (2000) Nitrite accumulation in an attapulgas clay biofilm reactor by fulvic acids. Bioresource Technol. 73(1): 91-93

    Google Scholar 

  • Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol. 160: 263-264

    Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds), The Prokaryotes (pp 554-582). Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philips, S., Laanbroek, H.J. & Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Re/Views in Environmental Science and Bio/Technology 1, 115–141 (2002). https://doi.org/10.1023/A:1020892826575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020892826575

Navigation