Skip to main content
Log in

Structural Features of ATPA and Thio-ATPA—Potent and Selective GluR5 Receptor Agonists. Crystal Structure Determinations and Quantum Chemical Calculations

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

ATPA and thio-ATPA are semirigid analogs of the excitatory neurotransmitter (S)-glutamic acid. (S)-ATPA and (S)-thio-ATPA are potent and selective GluR5 receptor agonists. X-ray structure determination of the zwitterions of (RS)-ATPA and (R)-thio-ATPA has been performed. Furthermore, quantum chemical ab initio calculations have been carried out on the tautomeric heterocyclic substructures 4,5-dimethyl-3-isoxazolol and 4,5-dimethyl-3-isothiazolol. Very high level ab initio calculations (including triple-ζ basis set and treatment of electron correlation) are necessary for a consistent theoretical description of the heterocyclic rings of these compounds. Results for the aqueous phase properties (PB-SCRF method, combined with density functional theory) are chemically reasonable and in agreement with experimental data. While the 3-isoxazolol tautomer of the zwitterionic amino acid ATPA predominates in all phases, the 3(2H)-isothiazolone tautomer of the zwitterionic amino acid thio-ATPA predominates in the crystal structure (3:1) and most likely in weakly acidic aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Collingridge, G. L.; Watkins, J. C. The NMDA Receptor; Oxford: Oxford University Press, 1994.

    Google Scholar 

  2. Hollmann, M.; Heinemann, S. Annu. Rev. Neurosci. 1994,17, 31-108.

    Google Scholar 

  3. Wheal, H.V.; Thomson, A. M. Excitatory Amino Acids and Synaptic Transmission; London: Academic Press, 1995.

    Google Scholar 

  4. Conn, P. J.; Pin, J.-P. Ann. Rev. Pharmacol. Toxicol. 1997,37,205-237.

    Google Scholar 

  5. Monaghan, D. T.; Wenthold, R. J. The Ionotropic Glutamate Receptors; Totowa, NJ: Humana Press, 1997.

    Google Scholar 

  6. Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S. F. Pharmacol. Rev. 1999,51,7-61.

    Google Scholar 

  7. Knöpfel, T.; Khun, R.; Allgeier, H. . J. Med. Chem. 1995,38,1417-1426.

    Google Scholar 

  8. Parsons, C. G.; Danysz, W.; Quack, G. Drug News Perspect. 1998,11,523-569.

    Google Scholar 

  9. Jonas, P.; Monyer, H. Handbook of Experimental Pharmacology, Ionotropic Glutamate Receptors in the CNS; Springer-Verlag: Berlin, 1999.

    Google Scholar 

  10. Lees, G. J. Drugs 2000,59(1), 33-78.

    Google Scholar 

  11. Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E. Ø.; Madsen, U.; Krogsgaard-Larsen, P. J. Med. Chem. 2000,43,2609-2645.

    Google Scholar 

  12. Lauridsen, J.; Honoré, T.; Krogsgaard-Larsen, P. J. Med. Chem. 1985,28,668-672.

    Google Scholar 

  13. Ebert, B.; Madsen, U.; Lund, T.; Krogsgaard-Larsen, P. Mol. Neuropharmacol. 1992,2,47-49.

    Google Scholar 

  14. Clarke, V. R. J.; Ballyk, B. A.; Hoo, K. H.; Mandelzys, A.; Pellizzari, A.; Bath, C. P.; Thomas, J.; Sharpe, E. F.; Davies, C. H.; Ornstein, P. L.; Schoepp, D. D.; Kamboj, R. K.; Collingridge, G. L.; Lodge, D.; Bleakman, D. Nature (London) 1997,389,599-603.

    Google Scholar 

  15. Curry, K.; Pajouhesh, H. Can. J. Physiol. Pharmacol. 1998,76,690-692.

    Google Scholar 

  16. Stensbøl, T. B.; Borre, L.; Johansen, T. N.; Egebjerg, J.; Madsen, U.; Ebert, B.; Krogsgaard-Larsen, P. Eur. J. Pharmacol. 1999,380,153-162.

    Google Scholar 

  17. Matzen, L.; Engesgaard, A.; Ebert, B.; Didriksen, M.; Frølund, B.; Krogsgaard-Larsen, P.; Jaroszewski, J. W. . J. Med. Chem. 1997,40,520-527.

    Google Scholar 

  18. Stensbøl, T. B.; Jensen, H. S.; Nielsen, B.; Johansen, T. N.; Egebjerg, J.; Frydenvang, K.; Krogsgaard-Larsen, P. Eur. J. Pharmacol. 2001,411,245-253.

    Google Scholar 

  19. Frydenvang, K.; Matzen, L.; Norrby, P.-O.; Sløk, F. A.; Liljefors, T.; Krogsgaard-Larsen, P.; Jaroszewski, J. W. J. Chem. Soc. Perkin Trans. 2 1997, pp. 1783-1791.

  20. Greenwood, J. R.; Vaccarella, G.; Capper, H. R.; Allan, R. D.; Johnston, G. A. R. Internet J. Chem. 1998,1, 38.

    Google Scholar 

  21. Woodcock, S.; Green, D. V. S.; Vincent, M. A.; Hillier, I. H.; Guest, M. F.; Sherwood, P. J. Chem. Soc. Perkin Trans. 2 1992, pp. 2151-2154.

  22. Enraf-Nonius. CAD-4 Software; Version 5.0, Enraf-Nonius: Delft, The Netherlands, 1989.

    Google Scholar 

  23. Blessing, R. H. Crystallogr. Rev. 1987,1, 3-58.

    Google Scholar 

  24. Blessing, R. H. J. Appl. Crystallogr. 1989,22, 396-397.

    Google Scholar 

  25. Sheldrick, G. M. SHELXS97. Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.

    Google Scholar 

  26. Sheldrick, G. M. Acta Crystallogr. 1990,A46, 467-473.

    Google Scholar 

  27. Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

    Google Scholar 

  28. Wilson, A. J. C.; Ed., International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Vol. C, Tables 4.2.6.8 and 6.1.1.4.

    Google Scholar 

  29. DeTitta, G. T. J. Appl. Crystallogr. 1985,18,75-79.

    Google Scholar 

  30. Flack, H. D. Acta Crystallogr. 1983,A39, 876-881.

    Google Scholar 

  31. Johnson, C. K. ORTEP II. A Fortran Thermal-Ellipsoid Plot Programme for Crystal Structure Illustrations; Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.

    Google Scholar 

  32. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7, 2001. Gaussian, Inc., Pittsburgh PA.

    Google Scholar 

  33. Jaguar 4.1, Schrödinger, Inc., Portland, OR, 1998.

  34. Montgomery Jr, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1998,110(6), 2822-2827.

    Google Scholar 

  35. Møller, E. H.; Egebjerg, J.; Brehm, L.; Stensbøl, T. B.; Johansen, T. N.; Madsen, U.; Krogsgaard-Larsen, P. Chirality 1999,11, 752-759.

    Google Scholar 

  36. Brehm, L.; Frydenvang, K.; Krogsgaard-Larsen, P.; Liljefors, T. Struct. Chem. 1997,9, 149-155.

    Google Scholar 

  37. Allen, F. H.; Kennard, O. Chem. Des. Autom. News 1993,8, 31-37.

    Google Scholar 

  38. Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: Heidelberg, 1991.

    Google Scholar 

  39. McVicars, J. L.; Mackay, M. F.; Davis, M. J. Chem. Soc. Perkin Trans. 2 1977, pp. 1332-1334.

  40. Brehm, L.; Ebert, B.; Kristiansen, U.; Wafford, K. A.; Kemp, J. A.; Krogsgaard-Larsen, P. Eur. J. Med. Chem. 1997,32, 357-363.

    Google Scholar 

  41. Cavalca, L.; Gasparri, G. F.; Mangia, A.; Pelizzi, G. Acta Crystallogr. 1969,B25, 2349-2354.

    Google Scholar 

  42. Cramer, C. J.; Truhlar D. G.; J. Amer. Chem. Soc. 1993,115, 8810-8817.

    Google Scholar 

  43. Luque, F. J.; López-Bes, J. M.; Cemeli, J.; Aroztegui, M.; Orozco, M. Theoret. Chem. Account,1997,96, 105-113.

    Google Scholar 

  44. Jang, Y. H.; Sowers, L. C.; Cagin, T.; Goddard, W. A. III., J. Phys. Chem. A 2001,105, 274-280.

    Google Scholar 

  45. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996,100, 11775-11788.

    Google Scholar 

  46. Elguero, J.; Marzin, C.; Katritzky, A. R.; Linda, P. Advances in Heterocyclic Chemistry,1976, Academic Press, Supplement 1: The Tautomerism of Heterocycles.

  47. Minkin, V. I.; Garnovskii, A. D.; Elguero, J.; Katritzky, A. R., Denisko, O. V. Advances in Heterocyclic Chemistry 2000,76, 157-323.

    Google Scholar 

  48. Boulton, A. J.; Katritzky, A. R.; Majid-Hamid, A.; Øksne, S. Tetrahedron 1964,2, 2835-2840.

    Google Scholar 

  49. Chan, A. W. K.; Crow, W. D.; Gosney, I. Tetrahedron 1970,26, 2497-2506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frydenvang, K., Greenwood, J.R., Vogensen, S.B. et al. Structural Features of ATPA and Thio-ATPA—Potent and Selective GluR5 Receptor Agonists. Crystal Structure Determinations and Quantum Chemical Calculations. Structural Chemistry 13, 479–490 (2002). https://doi.org/10.1023/A:1020569622239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020569622239

Navigation