Skip to main content
Log in

Effects of resource supplies on the structure and function of microbial communities

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The supplies of nutrients, and their elemental stoichiometry, can have significant impacts upon the structure and function of microbial communities. This review focuses on the effects of nutrient supplies on the biodegradation of organic matter, and on the dynamics of host-pathogen interactions. Analyses of data from the literature suggest significant effects of nitrogen:phosphorus supply ratios on the microbial decomposition of organic matter, and it is argued that these stoichiometric effects may have important implications for the fate and fluxes of carbon in natural ecosystems. In addition, it is shown that the supplies of nitrogen and phosphorus to the host can strongly influence the outcome of infections in both terrestrial and aquatic plants, suggesting that resource availability and resource supply ratios potentially may have significant effects on the health of many plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber JD & Melillo JM (1991) Terrestrial Ecosystems. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Aerts R, Wallén B, Malmer N & De Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J. Ecol. 89: 292–299.

    Article  CAS  Google Scholar 

  • Agrios GN (1997) Plant Pathology, 4th edn. Academic Press, New York.

    Google Scholar 

  • Alexander M (1999) Biodegradation and Bioremediation, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Atlas RM, Colwell RM, Pramer D, Tiedje JM, Vidaver AK & Wodzinski RJ (1992) Microbial Ecology. ASM News 58: 4–5.

    Google Scholar 

  • Birk EM & Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67: 69–79.

    Article  Google Scholar 

  • Bohannan B (2000) Effect of resource supply rate on host-pathogen dynamics. In: Bell CR, Brylinsky M & Johnson-Green P (Eds) Microbial Biosystems: New Frontiers. Proc. 8th Internat. Symp. Microb. Ecol., Halifax, Canada (pp 595–601). Atlantic Canada Society for Microbiology, Halifax.

    Google Scholar 

  • Carriero MM, Sinsabaugh RL, Repert DA & Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359–2365.

    Article  Google Scholar 

  • Cebrián R & Duarte CM (1995) Plant growth-rate dependence of detrital carbon storage in ecosystems. Science 268: 1606–1608.

    PubMed  Google Scholar 

  • Craigie JS & Correa JA (1996) Etiology of infectious diseases in cultivated Chondrus crispus (Gigartinales, Rhodophyta). Hydrobiologia 326/327: 97–104.

    Article  Google Scholar 

  • Elser JJ, Chrzanowski TH, Sterner RW, Schampel JH & Foster DK (1995) Elemental ratios and uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian Shield. Microb. Ecol. 29: 145–162.

    Article  CAS  Google Scholar 

  • Elser JJ, Stabler LB & Hassett RP (1995) Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquat. Microb. Ecol. 9: 105–110.

    Google Scholar 

  • Enríquez S., Duarte CM & Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94: 457–471.

    Article  Google Scholar 

  • Gonçalves MC, de Souza JAC, Granja P & Furlani PR (2000) Effect of nutrient suppy on symptom expression and concentration of potato leafroll virus (PLRV) in Physalis heterophylla. Summa Phytopathologica 26: 9–14.

    Google Scholar 

  • González G & Seastedt TR (2001) Soil fauna and plant litter decomposition in tropical and alpine forests. Ecology 82: 955–964.

    Article  Google Scholar 

  • Grover JP (1997) Resource Competition. Chapman and Hall, London.

    Google Scholar 

  • Hatcher PE, Paul ND, Ayres PG & JB Whittaker 1997. Nitrogen fertilization affects interactions between the components of an insect-fungus-plant tripartite system. Funct. Ecol. 11: 537–544.

    Article  Google Scholar 

  • Hobbie SE & Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81: 1867–1877.

    Article  Google Scholar 

  • Ingestad T (1979) Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition. Physiol. Plant. 45: 149–157.

    Article  CAS  Google Scholar 

  • Le J., Wehr JD & Campbell L (1994) Uncoupling of bacterioplankton and phytoplankton production in fresh waters is affected by inorganic nutrient limitation. Appl. Environ. Microbiol. 60: 2086–2093.

    PubMed  CAS  Google Scholar 

  • Marscher H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Moffat AS (2001) Finding new ways to fight plant diseases. Science 292: 2270–2272.

    Article  PubMed  CAS  Google Scholar 

  • Pace ML & Funke E (1991) Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72: 904–914.

    Article  Google Scholar 

  • Paul ND (1990) Modification of the effects of plant pathogens by other components of natural ecosystems. In: Burdon JJ & Leather SR (Eds) Pests, Pathogens and Plant Communities (pp 81–96). Blackwell Scientific, Oxford.

    Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168-169: 83–88.

    Article  CAS  Google Scholar 

  • Reiners WA (1987) Complementary models for ecosystems. Amer. Natur. 127: 59–73.

    Article  Google Scholar 

  • Rhee G-Y (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10–25.

    Article  CAS  Google Scholar 

  • Rivkin RB & Anderson MR (1997) Inorganic nutrient limitation of oceanic bacterioplankton. Limnol. Oceanogr. 42: 730–740.

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D & Weiland T (1993) Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74: 1586–1593.

    Article  CAS  Google Scholar 

  • Smith VH (1993a) Implications of resource-ratio theory for microbial ecology. In: Jones JG (Ed) Advances in Microbial Ecology, Vol 13 (pp 1–37). Plenum, New York.

    Google Scholar 

  • Smith VH (1993b) Resource competition between host and pathogen. BioScience 43: 21–31.

    Article  Google Scholar 

  • Smith VH, Tilman GD & Nekola JC (1999) Eutrophication: Effects of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100: 179–196.

    Article  PubMed  CAS  Google Scholar 

  • Smith VH & Holt RD (1996) Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11: 386–389.

    Article  Google Scholar 

  • Sterner RJ & Elser JJ (2002) Ecological Stoichiometry. Princeton University Press, Princeton.

    Google Scholar 

  • Tezuka Y (1990) Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 19: 227–238.

    Article  CAS  Google Scholar 

  • Thingstad TF, Havskum H, Kaas H, Nielsen G, Riemann B, Lefevre D & Williams PJ le B (1999) Bacteria-protist interactions and organic matter degradation under P-limited conditions: analysis of an enclosure experiment using a simple model. Limnol. Oceanogr. 44: 62–79.

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Tuomi P, Magne Fagerbakke K, Bratbak G & Heldal M (1995) Nutritional enrichment of a microbial community: The effects on activity, elemental composition, community structure and virus production. FEMS Microbial Ecol. 16: 123–134.

    Article  CAS  Google Scholar 

  • Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability, and food web interactions. Adv. Microbial Ecol. 16: 115–167.

    CAS  Google Scholar 

  • Vitousek PM, Fahey T, Johnson DW & Swift MJ (1988). Element interactions in forest ecosystems: Succession, allometry and input-output budgets. Biogeochemistry 5: 7–34.

    Article  CAS  Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ & Sanford RL (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawai'i: Patterns, mechanisms, and models. Ecology 75: 418–429.

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth, RW, Likens GE, Matson PE, Schindler DW, Schlesinger WH & Tilman GD (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7: 737–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, V.H. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek 81, 99–106 (2002). https://doi.org/10.1023/A:1020533727307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020533727307

Navigation