Skip to main content
Log in

Element interactions in forest ecosystems: succession, allometry and input-output budgets

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Element interactions within forests differ from those in other major ecosystems for three major reasons: — a greater allocation of carbon to structural material; — a greater element storage within biomass; and — the diversity of carbon- and nutrient-containing metabolites produced. The most important of these differences is structural material, which can lead to C: element ratios in biomass (as a whole) 100 × greater than those in unicellular organisms. Stand allometry causes the amount of carbon stored and C:element ratios in biomass to change in predictable ways in the course of secondary succession. Such changes affect microbial dynamics and C: element interactions within soils. Bicarbonate, organic acids, nitrate, phosphate, and sulfate are major anions within forest soils: they control leaching of both anions and cations. Biotic interactions of C, N, P, and S during both uptake and mineralization control the potential for production of these anions within forests, and geochemical interactions regulate their mobility and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J.D. & J.M. Melillo (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canadian Journal of Botany 58: 416–421

    Google Scholar 

  • Abrahamsen, G. (1980) Impact of atmospheric sulfur deposition on forest ecosystems. p. 397–416. In: D.S. Shriner, C.R. Richmond & S.E. Lindberg (Eds) Atmospheric Sulfur: Environmental Impact and Health Effects. Ann Arbor Science, Ann Arbor, Michigan

    Google Scholar 

  • Adams, D.R., S.O. Farwell, M.R. Pack & E. Robins (1980) Estimates of natural sulfur source strengths. p. 35–46. In: D.S. Shriner, C.R. Richmond and S.E. Lindberg (Eds) Atmospheric Sulfur Deposition, Ann Arbor Science, Ann Arbor, Michigan

    Google Scholar 

  • Anderson, J.M. & P. Ineson (1984) Interactions between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems. p. 59–88. In: J.M. Anderson, A.D.M. Rayner & D.W.H. Walton (Eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson, J.M., J. Proctor, & H.W. Vallack (1983) Ecological studies in four contrasting rainforests in Gunung Mulu National Park, Sarawak. III. Decomposition processes and nutrient losses from leaf litter. Journal of Ecology 71: 503–527

    Google Scholar 

  • Anderson, J.V., D.C. Coleman & C.V. Cole (1981) Effects of saprotrophic grazing on net mineralization. p. 201–217. In: F.E. Clark & T. Rosswall (Eds) Terrestrial nitrogen cycles. Ecological Bulletin (Stockholm) 33

  • Berg, B. & H. Staaf (1981) Leaching, accumulation and release of nitrogen in decomposing plant litter. p. 163–178. In: F.E. Clark & T. Rosswall (Eds) Terrestrial nitrogen cycles. Ecological Bulletin (Stockholm) 33

  • Birk, E.M. & P.M. Vitousek (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67: 69–79

    Google Scholar 

  • Bloom, A.J., F.S. Chapin III, & H.A. Mooney. 1985. Resource limitation in plants — an economic analogy. Ann. Rev. Ecol. Syst. 16: 363–393

    Google Scholar 

  • Bolin, B., & R.B. Cook (Eds) (1983) The major biogeochemical cycles and their interactions. John Wiley and Sons, Chichester. 532 pp

  • Bowden, B. (1986) Gaseous nitrogen losses from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry 2: 249–279

    Google Scholar 

  • Broecker, W.S. (1974) Chemical oceanography. Harvourt Brace Jovanovich, 214 pp

  • Bryant, J.P., F.S. Chapin III & D.R. Klein (1983) Carbon-nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368

    Google Scholar 

  • Cannell, M.G.R. (1982) World forest biomass and primary production data. Academic Press, New York

    Google Scholar 

  • Chapin, F.S. III (1980) The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260

    Google Scholar 

  • Chapin, F.S. III, G.R. Shaver & R.A. Kedrowski (1986) Environmental controls over carbon, nitrogen, and phosphorus fractions inEriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology 74: 167–195

    Google Scholar 

  • Chapin, F.S. III, P.M. Vitousek, & K. Van Cleve (1986b) The nature of nutrient limitation in plant communities. American Naturalist 127: 48–58

    Google Scholar 

  • Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology Biochemistry 17: 181–187

    Google Scholar 

  • Cole, C.V. & R.D. Heil (1981) Phosphorus effects on terrestrial nitrogen cycling. Clark, F.E. & T.H. Rosswall (Eds) Terrestrial Nitrogen Cycles. Ecological Bulletin, Stockholm 33: 363–374

  • Cole, C.V., G.S. Innis & J.W.B. Stewart (1977) Simulation of phosphorus cycling in semiarid grasslands. Ecology 58: 1–15

    Google Scholar 

  • Cole, D.W. & M. Rapp (1981) Elemental cycling in forest ecosystems. p. 341–409. In: Reichle, D.E. (Ed) Dynamic properties of forest ecosystems. Cmbridge University Press, Cambridge

    Google Scholar 

  • Coley, P.D., J.P. Bryant & F.S. Chapin III (1985) Resource availability and plant anti-herbivore defense. Science 230: 895–899

    Google Scholar 

  • Couto, W., D.J. Lathwell & D.R. Bouldin (1979) Sulfate adsorption by two Oxisols and an Alfisol of the tropics. Soil Science 127: 108–116

    Google Scholar 

  • Cowling, E.B. & W. Merrill (1966) Nitrogen in wood and its role in wood deterioration. Canadian Journal of Botany 44: 1539–1554

    Google Scholar 

  • DeAngelis, D.L., R.H. Gardner & H.H. Shugart (1981) Productivity of forest ecosystems studied during the IBP: the woodlands data set. p. 567–672. In: Reichle, D.E. (Ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Dowding, P. (1981) Nutrient uptake and allocation during substrate exploitation by fungi. p. 621–635. In: D. Wicklow & G.C. Carroll (Eds) The fungal community. Marcel Dekker, New York

    Google Scholar 

  • Dowding, P. (1976) Allocation of resources: nutrient uptake and utilization by decomposer organisms. p. 169–183. In: J.M. Anderson & A. Macfadyen (Eds) The role of aquatic and terrestrial organisms in decomposition processes. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Edwards, N.T. & B.M. Ross-Todd (1979) The effect of stem girdling on biogeochemical cycles within a mixed deciduous forest in eastern Tennessee. I. Soil solution chemistry, soil respiration, litterfall and root biomass studies. Oecologia 40: 247–257

    Google Scholar 

  • Ewel, J.J. (1976) Litterfall and leaf decomposition in a tropical forest succession in eastern Guatemala. Journal of Ecology 64: 293–308

    Google Scholar 

  • Ewel, J.J. (1986) Designing agroecosystems for the humid tropics. Annual Review of Ecology and Systematics 17: 245–271

    Google Scholar 

  • Folster, H., G. De las Salas, and P. Khanna (1976) A tropical evergreen forest site with perched water table, Magdalena Valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. Oecologia Plantarum 11: 297–320

    Google Scholar 

  • Frankland, J.C., D.K. Lindley & M.J. Swift (1978) An analysis of two methods for the estimation of mycelial biomass in leaf litter. Soil Biology Biochemistry 10: 323–333

    Google Scholar 

  • Gentry, A.H. (1983) Lianas and the “paradox” of contrasting latitudinal gradients in wood and litter production. Tropical Ecology 24: 63–67

    Google Scholar 

  • Gholz, H.L., R.F. Fisher & W.L. Pritchett (1985) Nutrient dynamics in slash pine plantation ecosystems. Ecology 66: 647–659

    Google Scholar 

  • Goodroad, L.L. & D.R. Keeney (1984) Nitrous oxide emission from forest, marsh, and prairie ecosystems. Journal of Environmental Quality 13: 448–452

    Google Scholar 

  • Gosz, J.R. (1980) Biomass distribution and production budget for a nonaggrading forest ecosystem. Ecology 61: 505–514

    Google Scholar 

  • Gosz, J.R. (1981) Nitrogen cycling in coniferous ecosystems. Ecological Bulletin, Stockholm 33: 405–426

    Google Scholar 

  • Gosz, J.R., G.E. Likens & F.H. Bormann (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological Monographs 47: 173–191

    Google Scholar 

  • Greenland, D.J. & J.M.L. Kowal (1960) Nutrient content of the moist tropical forest of Ghana. Plant and Soil 12: 154–173

    Google Scholar 

  • Grier, C.C. (1978) ATsuga heterophyllaPicea sitchensis ecosystem of coastal Oregon: Decomposition and nutrient balance of fallen logs. Canadian Journal of Forest Research 8: 198–206

    Google Scholar 

  • Grubb, P.J. (1977) Control of forest growth and distribution on wet tropical mountains, with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107

    Google Scholar 

  • Grubb, P.J. & P.J. Edwards (1982) Studies of mineral cycling in a montane rain forest in New Guinea. III. The distribution of elements in the aboveground material. Journal of Ecology 70: 623–648

    Google Scholar 

  • Haines, B. (1983) Forest ecosystem SO4-S input-output discrepancies and acid rain: Are they related? Oikos 41: 139–143

    Google Scholar 

  • Hallé, F., R.A.A. Oldeman & P.B. Tomlinson (1978) Tropical trees and forests: an architectural analysis. Springer-Verlag, New York

    Google Scholar 

  • Hase, H. & H. Folster (1982) Bioelement inventory of a tropical (semi-) evergreen seasonal forest on eutrophic alluvial soils, Western Llanos, Venezuela. Acta Oecologia, Oecologia Plantarum 3: 331–346

    Google Scholar 

  • Heal, D.W., M.J. Swift & J.M. Anderson (1982) Nitrogen cycling in U.K. forests: the relevance of basic ecological research. Philosophical Transactions of the Royal Society B296: 427–444

    Google Scholar 

  • Hingston, F.J., R.J. Atkinson, A.M. Posner & J.P. Quirk (1967) Specific adsorption of anions. Nature 215: 1459–1461

    Google Scholar 

  • Humphreys, F.R., M.J. Lambert & J. Kelly (1975) The occurrence of sulphur deficiency in forests. p. 154–162, In: McLachlan, K.D. (Ed), Sulphur in Australasian Agriculture. Sydney University Press, Sydney, Australia

    Google Scholar 

  • Hunt, H.W., J.W.B. Stewart & C.V. Cole (1983) A conceptual model for interactions among carbon, nitrogen, sulphur, and phosphorus in grasslands. p. 303–326. In: Bolin, B., and R.B. Cook (Eds) The major biogeochemical cycles and their interactions. John Wiley & Sons, Chichester

    Google Scholar 

  • Jaffré, T. (1985) Composition minérale et stocks de bioéléments dans la biomasse épigée de recrs forestiers en Ce d'Ivoire. Acta Oecologia, Oecologia Plantarum 6: 233–246

    Google Scholar 

  • Iritani, W.M. & C.Y. Arnold (1960) Nitrogen release of vegetable crop residues during incubation as related to their chemical composition. Soil Science 89: 74–82

    Google Scholar 

  • Jansson, S.L. (1958) Tracer studies on nitrogen transformation in soil with special attention to mineralization-immobilization relationships. Annals of the Royal Agricultural College of Sweden 24: 101–361

    Google Scholar 

  • Johnson, D.W. & D.W. Cole (1977) Sulfate mobility in an outwash soil in western Washington. Water, Air, and Soil Pollution 7: 489–495

    Google Scholar 

  • Johnson, D.W. & D.W. Cole (1980) Anion mobility in soils: Relevance to nutrient transport from forest ecosystems. Environment International 3: 79–90

    Google Scholar 

  • Johnson, D.W., and D.E. Todd (1983) Relationships among iron, aluminum, carbon, and sulfate in a variety of forest soils. Soil Science Society of America Journal 47: 792–800

    Google Scholar 

  • Johnson, D.W., D.W. Breuer & D.W. Cole (1979) The influence of anion mobility on soil leaching following municipal wastewater application. Journal of Environmental Quality 8: 246–250

    Google Scholar 

  • Johnson, D.W., D.W. Cole & S.P. Gessel (1979) Acid precipitation and soil sulfate adsorption properties in a tropical and in a temperate forest soil. Biotropica 11: 38–42

    Google Scholar 

  • Johnson, D.W., D.W. Cole, S.P. Gessel, M.J. Singer & R.V. Minden (1977) Carbonic acid leaching in a tropical, temperate, alpine and northern forest soil. Arctic Alpine Research 9: 329–343

    Google Scholar 

  • Johnson, D.W., D.W. Cole, H. Van Miegroet & F.W. Horng (1986) Factors affecting anion movement and retention in four forest soils. Soil Science Society of America Journal 50: 776–783

    Google Scholar 

  • Johnson, D.W., D.S. Henderson, D.D. Huff, S.E. Lindberg, D.D. Richter, D.S. Shriner, D.E. Todd & J. Turner (1982) Cycling of organic and inorganic sulphur in a chestnut oak forest. Oecologia 54: 141–148

    Google Scholar 

  • Jordan, C.F. (1985) Nutrient cycling in tropical forest ecosystems: principles and their application in conservation and management. John Wiley and Sons, Chichester, England, 179 pp

    Google Scholar 

  • Jordan, C.F. & P.G. Murphy (1978) A latitudinal gradient of wood and litter production, and its implications regarding competition and diversity in trees. American Midland Naturalist 99: 415–434

    Google Scholar 

  • Kelly, J.M. (1984) Power plant influences on bulk precipitation, throughfall, and stemflow nutrient inputs. Journal of Environmental Quality 13: 405–409

    Google Scholar 

  • Lambert, R.L., G.E. Lang & W.A. Reiners (1980) Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61: 1460–1473

    Google Scholar 

  • Laudelot, H. (1962) Dynamique des sols tropicaux et les differents systems de jachere. UN-FAO Report, 126 pp

  • Lee, J.J. & D.E. Weber (1982) Effects of simulated acid rain on major cation and sulfate concentrations of water percolating through two model hardwood forests. Journal of Environmental Quality 11: 57–65

    Google Scholar 

  • Levi, M. & E.B. Cowling (1969) Role of nitrogen in wood deterioration VII. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology 59: 460–468

    Google Scholar 

  • Likens, G.E., F.H. Bormann, R.S. Pierce & W.A. Reiners (1978) Recovery of a deforested ecosystem. Science 199: 492–496

    Google Scholar 

  • Lousier, J.D. & D. Parkinson (1978) Chemical element dynamics in decomposing leaf litter. Canadian Journal of Botany 56: 2795–2812

    Google Scholar 

  • MacLean, D.A. & R.W. Wein (1978) Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Canadian Journal of Botany 56: 2730–2749

    Google Scholar 

  • Marshall, J.D. & R.H. Waring (1986) Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology 67: 975–979

    Google Scholar 

  • Matson, P.A. & R. Boone (1984) Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology 65: 1511–1516

    Google Scholar 

  • Matson, P.A., P.M. Vitousek, J.J. Ewel, M.J. Mazzarino & G.P. Robertson (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68: 491–502

    Google Scholar 

  • McGill, W.B. & C.V. Cole (1981) Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26: 267–286

    Google Scholar 

  • McGill, W.B., H.W. Hunt, R.G. Woodmansee & J.O. Reuss (1981) A model of the dynamics of carbon and nitrogen in grassland soils. p. 49–116. In: Clark, F.E. & T.H. Rosswall (Eds) Terrestrial nitrogen cycles. Ecological Bulletin, Stockholm 33

  • McKey, D., P.G. Waterman, J.S. Gartlan & T.T. Struhsaker (1978) Phenolic content of vegetation in two African rain forests: Ecological implications. Science 202: 61–64

    Google Scholar 

  • Medina, E. & H. Klinge (1983) Productivity of tropical forests and tropical woodlands. p. 281–303, In: Lange, O.L., P.S. Nobel, C.B. Osmond, & H. Ziegler (Eds) Encyclopedia of Plant Physiology (NS), Vol 12D, Physiology Plant Ecology IV, Springer-Verlag, New York

  • Meentemeyer, V. (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472

    Google Scholar 

  • Meiwes, K.J. & P.K. Khanna (1981) Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant and Soil 60: 369–375

    Google Scholar 

  • Meiwes, K.J., P.K. Khanna & B. Ulrich (1980) Retention of sulfate by an acid brown earth and its relationship with atmospheric input of sulfur to forest vegetation. Zeitschrift für Pflanzener Bodenkunde 143: 400–411

    Google Scholar 

  • Melillo, J.M. & J.R. Gosz (1983) Interactions of biogeochemical cycles in forest ecosystems. p. 177–221, In: Bolin, B. & R.B. Cook (Eds) The major biogeochemical cycles and their interactions. John Wiley & Sons, Chichester, England

    Google Scholar 

  • Melillo, J.M., J.D. Aber & J.M. Muratore (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626

    Google Scholar 

  • Merrill, W. & E.B. Cowling (1966) Role of nitrogen in wood deterioration: amount and distribution of nitrogen in fungi. Phytopathology 56: 1083–1090

    Google Scholar 

  • Miller, H.G., J.M. Cooper & J.D. Miller (1976) Effect of nitrogen supply on nutrients in litterfall and crown leaching in a stand of corsican pine. Journal of Applied Ecology 13: 233–248

    Google Scholar 

  • Nihlgard, B. (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in south Sweden. Oikos 23: 69–81

    Google Scholar 

  • Ovington, J.D. & J.S. Olson (1970) Biomass and chemical contents of El Verde lower montane rain forest plants. pp. H53-77, In: H.T. Odum & R.F. Pigeon (Eds) A Tropical Rain Forest. U.S. Atomic Energy Commission, Oak Ridge, TN

    Google Scholar 

  • Park, D. (1976) Carbon and nitrogen levels as factors influencing fungal decomposers p. 41–59. In: J.M, Anderson and A. Macfadyen (Eds) The role of aquatic and terrestrial organisms in decomposition processes. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Pastor, J.J., J.D. Aber, C.A. McClaugherty & J.M. Melillo (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256–268

    Google Scholar 

  • Peterson, B.J. & J.M. Melillo (1985) The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117–127

    Google Scholar 

  • Putz, F.E. (1983) Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro basin, Venezuela. Biotropica 15: 185–189

    Google Scholar 

  • Redfield, A.C. (1958) The biological control of chemical factors in the environment. American Scientist 46: 206–226

    Google Scholar 

  • Reichle, D. (1971) Energy and nutrient metabolism of soil and litter invertebrates. p. 465–476. In: Productivity of forest ecosystems. Unesco, Paris

    Google Scholar 

  • Reiners, W.A. (1986) Complementary models for ecosystems. American Naturalist 127: 59–73

    Google Scholar 

  • Richter, D.D., D.W. Johnson & D.E. Todd (1983) Atmospheric sulfur deposition, neutralization, and ion leaching in two deciduous forest ecosystems. Journal of Environmental Quality 12: 263–270

    Google Scholar 

  • Riekerk, H. (1978) The behavior of nutrient elements added to a forest soil with sewage sludge. Soil Science Society of America Journal 42: 810–816

    Google Scholar 

  • Robertson, G.P. & J.M. Tiedje (1984) Denitrification and nitrous oxide production in successional and old-growth Michigan forests. Soil Science Society of America Journal 48: 383–388

    Google Scholar 

  • Rodin, L.E. & N.I. Bazilevich (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh and London

    Google Scholar 

  • Romell, L.G. (1935) Ecological problems of the humus layer in forest. Cornell University Agricultural Experiment Station Memoir 170, 28 pp

  • Rosswall, T.H. (1981) The biogeochemical nitrogen cycle. p. 25–50. In: Likens, G.E. (Ed) Some perspectives on the major biogeochemical cycles. John Wiley and Sons, Chichester

    Google Scholar 

  • Seastedt, T.R. (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology 29: 25–46

    Google Scholar 

  • Seastedt, T.R. & D.A. Crossley (1983) Nutrients in forest litter treated with naphthalene and simulated throughfall: a field microcosm study. Soil Biology Biochemistry 15: 154–165

    Google Scholar 

  • Schindler, D.W. (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262

    Google Scholar 

  • Schlesinger, W.H. (1985) The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta 49: 57–66

    Google Scholar 

  • Seagers, J.E., R.A. Minear, J.W. Elwood & P.J. Mulholland (1986) Chemical characterization of soluble phosphorus forms along a hydrologic flowpath of a forested stream ecosystem. ORNL/TM-9737. Oak Ridge National Laboratory, Oak Ridge TN

    Google Scholar 

  • Sharply, A.N., C.A. Jones, C. Gray & C.V. Cole (1984) A simplified soil and plant phosphorus model. II. Prediction of labile, organic, and sorbed phosphorus. Soil Science Society of America Journal 48: 805–809

    Google Scholar 

  • Shaver, G.R. & J.M. Melillo (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491–1510

    Google Scholar 

  • Shriner, D.S. & J.M. Henderson (1978) Sulfur distribution and cycling in a deciduous forest watershed. Journal of Environmental Quality 7: 392–397

    Google Scholar 

  • Singh, B.R., C. Abrahamsen, A.O. Stuanes & W.E. Opper (1975) Wastewater recycling on forest lands. p. 227–243. In: B. Bernier and C.H. Winget (Eds) Forest soils and lan management. Les Presses de l'Universite Laval, Quebec

    Google Scholar 

  • Smeck, N.E. (1985) Phosphorus dynamics in soils and landscapes. Geoderma 36: 185–199

    Google Scholar 

  • Sollins, P., C.C. Grier, F.M. McCorison, K. Cromack, R. Fogel & R.L. Fredricksen (1980) The internal element cycles of an old growth Douglas-fir ecosystem in western Oregon. Ecological Monographs 50: 261–285

    Google Scholar 

  • Sprugel, D.G. (1984) Density, biomass, productivity, and nutrient cycling changes during stand development in wave-regenerated balsam fir forests. Ecological Monographs 54: 165–186

    Google Scholar 

  • Stark, N. (1971) Nutrient cycling. II. Nutrient distribution in Amazonian vegetation. Tropical Ecology 12: 177–201

    Google Scholar 

  • Stednick, J.D. (1982) Sulfur cycling in Douglas-fir on a glacial outwash terrace. Journal of Environmental Quality 11: 43–45

    Google Scholar 

  • Swank, W.T. & J.E. Douglass (1977) Nutrient budgets for undisturbed and manipulated hardwood forests in the mountains of North Carolina. p. 343–363, In; D.L. Correll (Ed) Watershed research in North America. Vol l, Smithsonian Institution, Washington, D.C

  • Swank, W.T., J.W. Fitzgerald & J.T. Ash (1984) Microbial transformation of sulfate in forest soils. Science 223: 182–184

    Google Scholar 

  • Swank, W.T., J.B. Waide, D.A. Crossley & R.L. Todd (1981) Insect defoliation enhances nitrate export from forested ecosystems. Oecologia 51: 297–299

    Google Scholar 

  • Swift, M.J., O.W. Heal & J.M. Anderson (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Switzer, G.L. & L.E. Nelson (1972) Nutrient accumulation and cycling in loblolly pine (Pinus taedaL.) plantation ecosystems: the first 20 years. Soil Science Society of America Proceedings 36: 143–147

    Google Scholar 

  • Tanner, E.V.J. (1977) Four montane rainforests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. Journal of Ecology 65: 883–918

    Google Scholar 

  • Tanner, E.V.J. (1981) The decomposition of leaf litter in Jamaican montane forests. Journal of Ecology 69: 263–273

    Google Scholar 

  • Tanner, E.V.J. (1985) Jamaican montane forests: Nutrient capital and cost of growth. Journal of Ecology 69: 263–273

    Google Scholar 

  • Toky, O.P. & P.S. Ramakrishnan (1983a) Secondary succession following slash and burn agriculture in north-eastern India. I. Biomass, litterfall, and productivity. Journal of Ecology 71: 735–745

    Google Scholar 

  • Toky, O.P. and P.S. Ramakrishnan (1983b) Secondary succession following slash and burn agriculture in north-eastern India. II. Nutrient cycling. Journal of Ecology 71: 747–757

    Google Scholar 

  • Turner, J., D.W. Cole & S.P. Gessel (undated) A review of forest biomass accumulation. Internal Report No 56, Coniferous Forest Biome, Biome Central Office, AR-10, University of Washington, Seattle, WA

  • Uehara, G. & G. Gillman (1981) The minerology, chemistry, and physics of tropical soils with variable change clays. Westview Press, Boulder, Colorado

    Google Scholar 

  • Van Breeman, N., P.A. Burrough, E.J. Velthorst, H.F. Dobben, T. de Witt, T.B. Ridder & H.F.R. Reijuders (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 229: 548–550

    Google Scholar 

  • Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck & C.T. Dyrness (1983) Productivity and nutrient cycling in taiga forest ecosystems. Canadian Journal of Forest Research 13: 747–767

    Google Scholar 

  • van den Driessche, R. (1974) Prediction of mineral nutrient status of trees by foliar analysis. Botanical Review 40: 347–394

    Google Scholar 

  • Van Miegroet, H. & D.W. Cole (1984) The impact of nitrification on soil acidification and cation leaching in red alder ecosystems. Journal of Environmental Quality 13: 586–590

    Google Scholar 

  • Vitousek, P.M. (1982) Nutrient cycling and nutrient use efficiency. American Naturalist 119: 553–572

    Google Scholar 

  • Vitousek, P.M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285–298

    Google Scholar 

  • Vitousek, P.M. & P.A. Matson (1984) Mechanisms of nitrogen retention in forest ecosystems: a field experiment. Science 225: 51–52

    Google Scholar 

  • Vitousek, P.M. & P.A. Matson (1985) Disturbance, nitrogen availability, and nitorgen losses in an intensively managed loblolly pine plantation. Ecology 66: 1360–1376

    Google Scholar 

  • Vitousek, P.M. & R.L. Sanford Jr. (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17: 137–167

    Google Scholar 

  • Vitousek, P.M. & L.R. Walker (1987) Colonization, succession, and resource availability. p. 207–223. In: Gray, A., M. Crawley & P.J. Edwards (Eds), Colonization and Succession. British Ecological Society Symposium- Blackwell Scientific Publications

  • Vogt, K., C.C. Grier & D.J. Vogt (1986) Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research 15: 303–377

    Google Scholar 

  • Walbridge, M.R. (1986) Phosphorus availability in acid organic coastal plain soils. Ph.D. Dissertation, University of North Carolina, Chapel Hill. 117 pp

  • Walker, T.W. & J.K. Syers (1976) The fate of phosphorus during pedogenesis. Gerderma 15: 1–19

    Google Scholar 

  • Wiklander, L. (1976) The influence of anions on adsorption and leaching of cations in soils. Grundforbattring 24: 349–356

    Google Scholar 

  • Wood, T., F.H. Bormann & G.K. Voight (1984) Phosphorus cycling in a northern hardwood forest: Biological and chemical control. Science 223: 391–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitousek, P.M., Fahey, T., Johnson, D.W. et al. Element interactions in forest ecosystems: succession, allometry and input-output budgets. Biogeochemistry 5, 7–34 (1988). https://doi.org/10.1007/BF02180316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180316

Key words

Navigation