Skip to main content
Log in

The manganese dioxide electrode: Part XIII: An FTIR study of H-insertion into EMD

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two battery active γ-manganese dioxides, coded R2 and IBA 19, with ~100% microtwinning and ~40% de Wolff disorder were inserted with H by chemical methods in a nonaqueous environment. Compounds with compositions varying from the starting material to the fully H-inserted material were prepared and investigated by FTIR spectroscopy. Both series of compounds exhibited little change in their FTIR patterns until an H-insertion level expressed by s in MnOnHs of s = 0.63 (R2) and s = 0.55 (IBA 19) consistent with the idea that H and e− are mobile in the structure and present as independent thermodynamic components in an ideal solid solution. Beyond this level H location occurred as evidenced by a sharp change in integrated areas of regions of the spectra associated with O—H bond formation. Simultaneously a change in the position of one of the vibrations associated with that of the [MnO6] octahedra occurred. The assignment of bands in the spectra is discussed and evidence presented using a modified cusum procedure which supports the proposal that a demicrotwinning of the structure occurs as H begins to locate and the structure expands anisotropically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23 (1995) 1.

    Google Scholar 

  2. W. Feitknecht, H. R. Oswald and V. Feitknecht-Steinmann, Helv. Chimica Acta 43 (1960) 1947.

    Google Scholar 

  3. J. Brenet, J. Mallessan and A. Grund, C.R. Acad. Sci. 242 (1956) 111.

    Google Scholar 

  4. J. P. Gabano, B. Morignat, E. Fialdes, B. Emery and J. F. Laurent, Z. phys. Chem. 46(1965) 359.

    Google Scholar 

  5. W. C. Maskell, J. E. A. Shaw and F. L. Tye, J. Power Sources 8(1982) 113

    Google Scholar 

  6. Idem, Electrochem. Acta 28 (1983) 225.

    Google Scholar 

  7. Idem, ibid. 28 (1983) 231.

  8. Idem, ibid. 26 (1981) 1403.

  9. F. L. Tye, ibid. 30 (1985) 17.

    Google Scholar 

  10. S. Atlung and T. Jacobsen, ibid. 26 (1981) 1447.

    Google Scholar 

  11. J. Fitzpatrick and F. L. Tye, J. Appl. Electrochem. 21 (1991) 130.

    Google Scholar 

  12. R. Giovanoli, K. Bernhard and W. Feitknecht, Helv. Chim. Acta 52 (1969) 2333.

    Google Scholar 

  13. F. L. Tye and S. W. Tye, J. Appl. Electrochem. 25 (1995) 425.

    Google Scholar 

  14. L. A. H. Maclean and F. L. Tye, accepted for publication in J. Solid State Chem.

  15. D. G. Malpas and F. L. Tye, `Handbook of Manganese Dioxides Battery Grade', (edited by D. Glover B. Schumn and A. Kozawa), International Battery Material Association, Brunswick, OH (1989) p. 177.

    Google Scholar 

  16. D. S. Freeman, P. F. Pelter, F. L. Tye and L. L. Wood, J. Appl. Electrochem. 1 (1971) 127

    Google Scholar 

  17. C. St Claire-Smith, J. A. Lee and F. L. Tye, `Manganese Dioxide Symposium', vol. 1, Cleveland (edited by A. Kozawa and R. J. Brodd), I. C. Sample Office (1975) p. 13

  18. M. Yamashita, M. Ide, H. Takemura, K. Konishi and A. Kozawa, `Handbook of Manganese Dioxide Battery Grade' op. cit. [15], p.259.

  19. Idem, op.cit. [15], Appendix, p. 302.

  20. T. Allen, `Particle Size Measurement', Chapman & Hall, London (1981) p. 127.

    Google Scholar 

  21. K. J. Vetter and N. Yeager. Electrochim. Acta 11 (1966) 401.

    Google Scholar 

  22. R. M. Potter and G. R. Rossman, Amer. Miner. 64(1979) 1199.

    Google Scholar 

  23. J. D. Russel, `Laboratory Methods in Vibrational Spectroscopy' (edited by H. A. Willis, J. H. Van Der Maas, R. G. J. Miller) Ellis Horwood, Chichester, 3rd edn (1989) p. 428.

    Google Scholar 

  24. D. A. J. Swinkels, op.cit. [15], p. 253.

  25. M. Ocaña and J. Serna, Spectrochimica Acta 47A (1991) 765.

    Google Scholar 

  26. V. Maroni, J. Phys. Chem. Solids 49 (1988) 307.

    Google Scholar 

  27. A. F. Wells, `Structural Inorganic Chemistry', Clarendon press, Oxford, 5th edn. (1987) p. 639.

    Google Scholar 

  28. L. Verdonck, S. Hoste, F. F. Roelandt and G. P. Van der kelen, J. Molec. Struct. 79 (1982) 273.

    Google Scholar 

  29. D. M. Sherman, Amer. Mineral. 69 (1984) 788.

    Google Scholar 

  30. R. G. Burns and V. M. Burns, `Manganese Dioxide Electrode Theory and Practice for Electrochemical Application' (edited by B. Schumm, R. L. Middaugh, M. P. Grotheer and J. C. Hunter), The Electrochem. Soc., Pennington, NJ (1985) p. 97.

    Google Scholar 

  31. P. G. Hall, N. S. Clarke and S. C. P. Maynard, J. Phys. Chem. 99 (1995) 5666.

    Google Scholar 

  32. F. Fillaux, C. H. Cachet, H. Ouboumour, J. Tomkinson, C. Lévy-Clément and L. T. Yu, J. Electrochem. Soc. 140 (1993) 585.

    Google Scholar 

  33. K. Nakamoto, `Infrared and Raman Spectra of Inorganic and Coordination Compounds', Wiley, New York 3rd edn (1978) p. 9.

    Google Scholar 

  34. L. A. H. MacLean and F. L. Tye, in preparation.

  35. F. Fillaux, H. Ouboumour, C. H. Cachet, J. Tomkinson, C. Lévy-Clément and L. T. Yu, J. Electrochem. Soc. 140 (1993) 592.

    Google Scholar 

  36. C. Chatfield, `Statistics for Technology', Chapman & Hall, London (1985) p. 306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FITZPATRICK , J., MACLEAN , L.A.H., SWINKELS , D.A.J. et al. The manganese dioxide electrode: Part XIII: An FTIR study of H-insertion into EMD. Journal of Applied Electrochemistry 27, 243–253 (1997). https://doi.org/10.1023/A:1018420527831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018420527831

Keywords

Navigation