Skip to main content
Log in

Interstitial versus substitutional metal insertion in V2O5 as post-lithium ion battery cathode: a comparative GGA/GGA + U study with localized bases

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The generalized gradient approximation (GGA) often fails to correctly describe the electronic structure and thermochemistry of transition metal oxides and is commonly improved using an inexpensive correction term with a scaling parameter U. The authors tune U to reproduce experimental vanadium oxide redox energetics with a localized basis and a GGA functional. The value for U is found to be significantly lower than what is generally reported with plane-wave bases, with the uncorrected GGA results being already in reasonable agreement with experiments. This computational set-up is used to calculate interstitial and substitutional insertion energies of main group metals in vanadium pentoxide and interstitial doping is found to be thermodynamically favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. G.G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman, and R. Jaworski: Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 148, A940 (2001).

    Article  CAS  Google Scholar 

  2. C. Delmas, H. Cognac-Auradou, J.M. Cocciantelli, M. Ménétrier, and J.P. Doumerc: The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ion 69, 257 (1994).

    Article  CAS  Google Scholar 

  3. G. Gershinsky, H.D. Yoo, Y. Gofer, and D. Aurbach: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964 (2013).

    Article  CAS  Google Scholar 

  4. S. Liu, Z. Tong, J. Zhao, X. Liu, J. wang, X. Ma, C. Chi, Y. Yang, X. Liu, and Y. Li: Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 25645 (2016).

    Article  CAS  Google Scholar 

  5. H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, and K. Amine: Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interface 7, 80 (2015).

    Article  CAS  Google Scholar 

  6. E.E. Chain: Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl. Opt. 30, 2782 (1991).

    Article  CAS  Google Scholar 

  7. J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn: Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials. J. Appl. Phys. 110, 033710 (2011).

    Article  Google Scholar 

  8. S. Suthirakun, A. Genest, and N. Rösch: Modeling polaron-coupled Li cation diffusion in V2O5 cathode material. J. Phys. Chem. C 122, 150 (2018).

    Article  CAS  Google Scholar 

  9. B. Hu, L. Li, X. Xiong, L. Liu, C. Huang, D. Yu, and C. Chen: High-performance of copper-doped vanadium pentoxide porous thin films cathode for lithium-ion batteries. J. Solid State Electrochem. 23, 1315 (2019).

    Article  CAS  Google Scholar 

  10. A. Jin, W. Chen, Q. Zhu, Y. Yang, V.L. Volkov, and G.S. Zakharova: Structural and electrochromic properties of molybdenum doped vanadium pentoxide thin films by sol–gel and hydrothermal synthesis. Thin Solid Films 517, 2023 (2009).

    Article  CAS  Google Scholar 

  11. M.S. Whittingham, C. Siu, and J. Ding: Can multielectron intercalation reactions be the basis of next generation batteries?Acc. Chem. Res. 51, 258 (2018).

    Article  CAS  Google Scholar 

  12. J. Lüder, F. Legrain, Y. Chen, and S. Manzhos: Doping of active electrode materials for electrochemical batteries: An electronic structure perspective. MRS Commun. doi: 10.1557/mrc.2017.69, Published online 14 August 2017.

    Google Scholar 

  13. A. Jovanovic, A.S. Dobrota, L.D. Rafailovic, S.V. Mentus, I.A. Pašti, B. Johansson, and N.V. Skorodumova: Structural and electronic properties of V2O5 and their tuning by doping with 3d elements–modelling using the DFT + U method and dispersion correction. Phys. Chem. Chem. Phys.20, 13934 (2018).

    Article  CAS  Google Scholar 

  14. D. Koch and S. Manzhos: Can Doping of Transition Metal Oxide Cathode Materials Increase Achievable Voltages with Multivalent Metals? ChemRxiv (2019) Preprint. doi:10.26434/chemrxiv.10050575.v1.

    Google Scholar 

  15. M. Giorgetti, M. Berrettoni, and W.H. Smyrl: Doped V2O5-based cathode materials: Where does the doping metal go? An X-ray absorption spectroscopy study. Chem. Mater. 19, 5991 (2007).

    Article  CAS  Google Scholar 

  16. K. McColl, I. Johnson, and F. Corà: Thermodynamics and defect chemistry of substitutional and interstitial cation doping in layered a-V2O5. Phys. Chem. Chem. Phys. 20, 15002 (2018).

    Article  CAS  Google Scholar 

  17. S. Chen and L.-W. Wang: Double-hole-induced oxygen dimerization in transition metal oxides. Phys. Rev. B 89, 014109 (2014).

    Article  Google Scholar 

  18. L. Wang, T. Maxisch, and G. Ceder: Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  21. D. Koch and S. Manzhos: Ab initio modeling and design of vanadia-based electrode materials for post-lithium batteries. J. Phys. D: Appl. Phys. 53, 083001 (2019).

    Article  Google Scholar 

  22. V. Polo, E. Kraka, and D. Cremer: Electron correlation and the self-interaction error of density functional theory. Mol. Phys. 100, 1771 (2002).

    Article  CAS  Google Scholar 

  23. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, and G. Ceder: Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012).

    Article  Google Scholar 

  24. S. Lutfalla, V. Shapovalov, and A.T. Bell: Calibration of the DFT/GGA +U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7, 2218 (2011).

    Article  CAS  Google Scholar 

  25. D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, and J. Park: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 119, 1921 (2015).

    Article  CAS  Google Scholar 

  26. G.S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson, and G. Ceder: First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51, 13619 (2015).

    Article  CAS  Google Scholar 

  27. S. Suthirakun, S. Jungthawan, and S. Limpijumnong: Effect of Sn-doping on behavior of Li-intercalation in V2O5 cathode materials of Li-ion batteries: A computational perspective. J. Phys. Chem. C 122, 5896 (2018).

    Article  CAS  Google Scholar 

  28. A. Urban, D.-H. Seo, and G. Ceder: Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    Article  CAS  Google Scholar 

  29. C.G. Van de Walle and J. Neugebauer: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).

    Article  Google Scholar 

  30. R. Verrelli, A.P. Black, C. Pattanathummasid, D.S. Tchitchekova, A. Ponrouch, J. Oró-Solé, C. Frontera, F. Bardé, P. Rozier, and M.R. Palacín: On the strange case of divalent ions intercalation in V2O5. J. Power Sources 407, 162 (2018).

    Article  CAS  Google Scholar 

  31. A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder: Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the Ministry of Education of Singapore (Grant No. MOE2015-T2-1-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Koch or Sergei Manzhos.

Supplementary Material:

43579_2020_10020259_MOESM1_ESM.pdf

Interstitial vs. substitutional metal insertion in V2O5 as post-lithium ion battery cathode: a comparative GGA/GGA+U study with localized bases

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2020.36|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, D., Manzhos, S. Interstitial versus substitutional metal insertion in V2O5 as post-lithium ion battery cathode: a comparative GGA/GGA + U study with localized bases. MRS Communications 10, 259–264 (2020). https://doi.org/10.1557/mrc.2020.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.36

Navigation