Skip to main content
Log in

Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We reported earlier about the detection of a chromosomally located arsenic operon (arsRBC) in a gram-negative bacterium Pseudomonas fluorescens strain MSP3, which showed resistance to elevated levels of sodium arsenate and sodium arsenite. The genes for arsenic resistance were cloned into the HindIII site of pBluescript vector producing three clones MSA1, MSA2 and MSI3 conferring resistance to sodium arsenate and arsenite salts. They were further sub-cloned to delineate the insert size and the sub-clones were designated as MSA11, MSA12 and MSI13. The sub-clone pMSA12 (2.6 kb) fragment was further packaged into EcoRI-PstI site of M13mp19 and sequenced. Nucleotide sequencing revealed the presence of three open reading frames homologous to the arsR, arsB and arsC genes of arsenic resistance. Three cistrons of the ars operon encoded polypeptides ArsR, ArsB and ArsC with molecular weights ranging approximately 12, 37and 24 kDa, respectively. These polypeptides were visualized on SDS-PAGE stained with Coomassie blue and measured in a densitometer. The arsenic resistance operon (arsRBC) of strain MSP3 plasmid pMSA12 consists of 3 genes namely, arsR – encoding a repressor regulatory protein, arsB – the determinant of the membrane efflux protein that confers resistance by pumping arsenic from the cells and arsC – a small cytoplasmic polypeptide required for arsenate resistance only, not for arsenite resistance. ArsB protein is believed to use the cell membrane potential to drive the efflux of intracellular arsenite ions. ArsC encodes for the enzyme arsenate reductase which reduces intracellular As(V) (arsenate) to more toxic As(III) (arsenite) and is subsequently extruded from the cell. The arsenate reductase activity was present in the soluble cytoplasmic fraction in E. coli clones. In the context of specified function of the arsenic operon encoded proteins, uptake and efflux mechanisms were studied in the wild strain and the arsenate/arsenite clones. The cell free filtrates of the arsenate clones (MSA11 and MSA12) obtained from P. fluorescens containing the arsC gene showed that arsenate reduction requires glutathione reductase, glutathione (GSH), glutaredoxin and ArsC protein. The protein was purified in an active form and a spectrophotometric assay was developed in which the oxidation of NADPH was coupled to reduction of arsenate. The molecular weights and the location of the polypeptides were obtained from Coomassie stained SDS-PAGE of extracellular and intracellular fractions of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou T, Radaev S, Rosen BP & Gatti DL (2000) EMBO J. 19: 4838–4845

    Google Scholar 

  2. Dey S & Rosen BP (1995) Mechanisms in drug transport in prokaryotes and eukaryotes. In ‘Drug Transport in Antimicrobial and Anticancer Chemotherapy’ (Ed. by Georgopapadakou NH) Dekker, pp. 103–132, New York, NY

    Google Scholar 

  3. Rosen BP (1999) Trends Microbiol. 7: 207–212

    Google Scholar 

  4. Silver S & Ji G (1994) Environ. Health. Perspect. 102 (Suppl.3), 107–113

    Google Scholar 

  5. Cervantes C, Ji G, Ramirez J L & Silver S (1994) FEMS Microbiol. Rev. 15: 335–367

    Google Scholar 

  6. Silver, S & Keach D (1982) Proc. Natl. Acad. Sci. USA 79: 6114–6118

    Google Scholar 

  7. Xu C, Zhou L, Kuroda M & Rosen BP (1998) J. Biochem. 123: 16–23

    Google Scholar 

  8. Rosen BP, Dey S, Dou D, Ji G, Kaur P, Ksenzenko MY, Silver S & Wu J (1992) Ann. N.Y. Acad. Sci. 671: 257–272

    Google Scholar 

  9. Silver S, Ji G, Broer S, Dey S, Dou D & Rosen BP (1993) Mol. Microbiol. 8: 637–642

    Google Scholar 

  10. Ji G & Silver S (1992). J. Bacteriol. 174: 3684–3694

    Google Scholar 

  11. Prithivirajsingh S, Mishra SK & Mahadevan A (2001) Biochem. Biophys. Res. Comm. 280: 1393–1401

    Google Scholar 

  12. Silver S (1996) Gene 197: 9–19

    Google Scholar 

  13. Nakamuro K & Sayato Y (1981) Mutat. Res. 88: 73–80

    Google Scholar 

  14. Bergey's Manual of Determinative Bacteriology (1994) (Eds. by Holt JG, Krieg NR, Sneath PHA, Staley JL and Williams ST) Williams and Wilkins, Baltimore.

    Google Scholar 

  15. Hatch WR & Ott WL (1996) Anal. Chem. 40: 2085–2087

    Google Scholar 

  16. Bradford MM (1976) Anal; Biochem. 72: 248–256

    Google Scholar 

  17. Laemmli UK (1970) Nature 227: 229–230

    Google Scholar 

  18. Read RR & Consterton (1987) Can. J. Microbiol. 33: 1080–1090

    Google Scholar 

  19. Funahashi H, Maehara M, Yoshida T & Tagachi H (1987) J. Chem. Eng. Japan 20: 16–28

    Google Scholar 

  20. Ji G & Silver S (1992) Proc. Natl. Acad. Sci. USA 89: 9474–9478

    Google Scholar 

  21. Gladysheva TB, Oden KL & Rosen BP (1994) Biochemistry 33: 7287–7293

    Google Scholar 

  22. Ji G, Graber EA, Armes LG, Chen CM, Fuchs JA & Silver S (1994) Biohemistry 33: 7294–7299

    Google Scholar 

  23. Silver S & Phung Le T (1996) Annu. Rev. Microbiol. 50: 735–789

    Google Scholar 

  24. Sofia H J, Burland V, Daniels DL, Dluncett G & Blattner FR (1994) Nucleic Acids Res. 22: 2576–2586

    Google Scholar 

  25. Carlin A, Dey SW & Rosen BP (1995) J. Bacteriol. 177: 981–986

    Google Scholar 

  26. Diorio C, Cai J, Marmor J, Shinder R & DuBow MS (1995) J. Bacteriol. 177: 2050–2056

    Google Scholar 

  27. Takemaru KI, Mizuno M, Sato T, Takeuchi M & Kobayashi Y (1995) Microbiology 141: 323–327

    Google Scholar 

  28. Hedges RW & Baumberg S (1973) J. Bacteriol. 115: 459–460

    Google Scholar 

  29. Mobley HLT, Silver S, Porter FD & Rosen BP (1984) Antimicrobiol. Agents Chemother. 25: 157–161

    Google Scholar 

  30. Novick RP & Roth C (1986) J. Bacteriol. 95: 1335–1342

    Google Scholar 

  31. Summers AO & Jacoby GA (1978) Antimicrobid. Agents Chemother. 13: 637–640

    Google Scholar 

  32. Silver S, Budd K, Leathy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy MH & Rosenberg H (1981) J. Bacteriol. 146: 983–996

    Google Scholar 

  33. Broer S, Ji G, Broer A & Silver S (1993) J. Bacteriol. 175: 3480–3485

    Google Scholar 

  34. Rosentein R, Niloleit K & Gotz F (1994) Mol. Gen. Genet. 242: 566–572

    Google Scholar 

  35. Mobley HLT & Rosen BP (1982) Proc. Natl. Acad. Sci. USA 79: 6119–6122

    Google Scholar 

  36. Chen CM, Misra TP, Silver S & Rosen BP (1986) J. Bacteriol. 261: 15030–15038

    Google Scholar 

  37. Wu JH & Rosen BP (1993) J. Biol. Chem. 268: 52–58

    Google Scholar 

  38. Wu JH & Rosen BP (1993) Mol. Microbiol. 8: 615–623

    Google Scholar 

  39. Dey S, Dou D, Tisa LS & Rosen BP (1994) Arch. Biochem. Biophys. 311: 418–424

    Google Scholar 

  40. Tisa LS & Rosen BP (1991) J. Biol. Chem. 265: 190–194

    Google Scholar 

  41. Dey S & Rosen BP (1995) J. Bacteriol. 177: 385–389

    Google Scholar 

  42. Dou D, Dey S & Rosen BP (1994) Antonie van Leeuwenhoek 65: 359–368

    Google Scholar 

  43. Rosentein R, Peschal A, Wieland B & Gotz F (1992) J. Bacteriol. 174: 3676–3683

    Google Scholar 

  44. Liu J & Rosen BP (1997) J. Biol. Chem. 272: 21084–21089

    Google Scholar 

  45. Westenberg DJ & Guerinot ML (1997) Adv. Genet. 36: 187–239

    Google Scholar 

  46. Sata T & Kobayashi Y (1998) J. Bacteriol. 180: 1655–1661

    Google Scholar 

  47. Butcher BG, Deane SM & Rawlings DE (2000) Appl. Env. Microbiol. 66: 1826–1833

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prithivirajsingh, S., Mishra, S.K. & Mahadevan, A. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol Biol Rep 28, 63–72 (2001). https://doi.org/10.1023/A:1017950207981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017950207981

Navigation